A 3/2-approximation algorithm for the student-project allocation problem with ties

Frances Cooper
Joint work with: Dr David Manlove
Outline
Outline

• Matching problems
Outline

• Matching problems

• Maximum sized stable matching
Outline

• Matching problems

• Maximum sized stable matching
 • Integer programming
Outline

• Matching problems

• Maximum sized stable matching
 • Integer programming
 • Approximation algorithm
Outline

• Matching problems

• Maximum sized stable matching
 • Integer programming
 • Approximation algorithm

• Future work
Matching Problems
Matching Problems

• Assign one set of entities to another set of entities
Matching Problems

- Assign one set of entities to another set of entities
- Based on preferences and capacities
Student-project allocation problem (SPA-ST)

Students

- s1
- s2
- s3
- s4

Projects

- p1
- p2
- p3

Lecturers

- l1
- l2
Student-project allocation problem (SPA-ST)

- **Students**
 - s1
 - s2
 - s3
 - s4

- **Projects**
 - p1
 - p2
 - p3

- **Lecturers**
 - l1
 - l2
Student-project allocation problem (SPA-ST)

Students

- s1
- s2
- s3
- s4

Projects

- p1: 1 space
- p2: 2 spaces
- p3: 1 space

Lecturers

- l1: 2 spaces
- l2: 2 spaces
Student-project allocation problem (SPA-ST)
Student-project allocation problem (SPA-ST)
Student-project allocation problem (SPA-ST)
Stable matching
Stable matching

- weak stability
- strong stability
- super stability
A stable matching is a matching with no blocking pairs.
A stable matching is a matching with no blocking pairs.

- **Weak stability**: No Blocking pairs: both agents are better off.
- **Strong stability**: No Blocking Pairs: one agent is better off, the other is no worse off.
- **Super stability**: No Blocking Pairs: neither agent is worse off.
A stable matching is a matching with no blocking pairs.

- **weak stability**: No Blocking pairs: both agents are better off
- **strong stability**: No Blocking Pairs: one agent is better off, the other is no worse off
- **super stability**: No Blocking Pairs: neither agent is worse off
weak stability
weak stability

Blocking pair: both agents are better off
weak stability

Blocking pair: both agents are better off

project and lecturer undersubscribed
weak stability

Blocking pair: both agents are better off

project and lecturer undersubscribed

project undersubscribed, lecturer full
weak stability

Blocking pair: both agents are better off

Project and lecturer undersubscribed

Project undersubscribed, lecturer full

Project full, (lecturer full or undersubscribed)
Maximum stable matchings
Maximum stable matchings

- A **stable matching** is a matching with no blocking pairs
Maximum stable matchings

- A **stable matching** is a matching with no blocking pairs
- No ties in preference lists - find a stable matching in polynomial time - all same size
Maximum stable matchings

- **A stable matching** is a matching with no blocking pairs

- No ties in preference lists - find a stable matching in polynomial time - all same size

- **Ties in preference lists** - find a stable matching in polynomial time - but stable matchings are different sizes
Maximum stable matchings

• A **stable matching** is a matching with no blocking pairs

• No ties in preference lists - find a stable matching in polynomial time - all same size

• **Ties in preference lists** - find a stable matching in polynomial time - but stable matchings are **different sizes**

• Finding a maximum sized stable matching is **NP-hard**.
Finding a maximum sized stable matching
Finding a maximum sized stable matching

Two techniques:
Finding a maximum sized stable matching

Two techniques:

1. Approximation algorithm
Finding a maximum sized stable matching

Two techniques:

1. Approximation algorithm
2. Integer Programming
Approximation Algorithm
Previous work
Previous work

- Hospitals/Residents with Ties (HRT) - special case of SPA-ST, each lecturer offers one project and the capacity of each lecturer equals the capacity of their offered project
Previous work

• Hospitals/Residents with Ties (HRT) - special case of SPA-ST, each lecturer offers one project and the capacity of each lecturer equals the capacity of their offered project

• A 3/2-approximation algorithm exists for HRT

Linear Time Local Approximation Algorithm for Maximum Stable Marriage; Algorithms; 2013; Kiraly
Previous work

- Hospitals/Residents with Ties (HRT) - special case of SPA-ST, each lecturer offers one project and the capacity of each lecturer equals the capacity of their offered project

- A 3/2-approximation algorithm exists for HRT

- Can I just convert my problem and use this algorithm?

Linear Time Local Approximation Algorithm for Maximum Stable Marriage; Algorithms; 2013; Kiraly
Previous work

- Hospitals/Residents with Ties (HRT) - special case of SPA-ST, each lecturer offers one project and the capacity of each lecturer equals the capacity of their offered project
- A 3/2-approximation algorithm exists for HRT
- Can I just convert my problem and use this algorithm?
- Not using a conversion process we tried.

Linear Time Local Approximation Algorithm for Maximum Stable Marriage; Algorithms; 2013; Kiraly
3/2-approximation algorithm
3/2-approximation algorithm

- Created a new 3/2 approximation algorithm for SPA-ST, based on Kiraly’s HRT algorithm.
3/2-approximation algorithm

• Created a new 3/2 approximation algorithm for SPA-ST, based on Kiraly’s HRT algorithm.

• Moving from HRT to SPA-ST
3/2-approximation algorithm

• Created a new 3/2 approximation algorithm for SPA-ST, based on Kiraly’s HRT algorithm.
 • Moving from HRT to SPA-ST
 • Lecturers added a lot of complications
3/2-approximation algorithm

- Created a new 3/2 approximation algorithm for SPA-ST, based on Kiraly’s HRT algorithm.
 - Moving from HRT to SPA-ST
 - Lecturers added a lot of complications
 - Definition of a blocking pair is more complicated
Approximation algorithm
high-level look
Approximation algorithm
high-level look

Students (who are not already assigned) apply in turn to their favourite project on their preference list. Assume student s applies to project p.
Approximation algorithm
high-level look

Students (who are not already assigned) apply in turn to their favourite project on their preference list. Assume student s applies to project p.

- if p and l (the lecturer of p) are undersubscribed then we add (s,p) to our matching
Approximation algorithm
high-level look

Students (who are not already assigned) apply in turn to their favourite project on their preference list. Assume student s applies to project p.

- if p and l (the lecturer of p) are undersubscribed then we add (s,p) to our matching

- if either p or l are full then we need to check whether (s,p) should replace an *existing* pair in the matching
Approximation algorithm
high-level look

Students (who are not already assigned) apply in turn to their favourite project on their preference list. Assume student s applies to project p.

- if p and l (the lecturer of p) are undersubscribed then we add (s,p) to our matching

- if either p or l are full then we need to check whether (s,p) should replace an existing pair in the matching

- if there is no chance for s to assign to p then s will remove p from their preference list (and will now apply to their next favourite)
Approximation algorithm high-level look

Students (who are not already assigned) apply in turn to their favourite project on their preference list. Assume student \(s \) applies to project \(p \).

- if \(p \) and \(l \) (the lecturer of \(p \)) are undersubscribed then we add \((s,p)\) to our matching

- if either \(p \) or \(l \) are full then we need to check whether \((s,p)\) should replace an existing pair in the matching

- if there is no chance for \(s \) to assign to \(p \) then \(s \) will remove \(p \) from their preference list (and will now apply to their next favourite)

- Students iterate twice through their preference list
Proofs
Proofs

Three proofs required:
Proofs

Three proofs required:

• the algorithm runs in linear time
Proofs

Three proofs required:

• the algorithm runs in linear time

• the resultant matching is stable
Proofs

Three proofs required:

• the algorithm runs in linear time

• the resultant matching is stable

• the matching is at least $2/3$ the size of optimal
Performance guarantee - creating G'

G

G'

M_{opt}

M

students

1

2

3

4
Performance guarantee - creating G'

G

G'

M_{opt}

M
Performance guarantee - creating G'

G

$s1$ $p1$ $l1$
$s2$ $p2$ $l1$
$s3$ $p3$ $l2$
$s4$ $p1$ $l2$

G'

students
1
2
3
4

lecturer clones
1
2
3
4

M_{opt}

M
Performance guarantee - creating G'
Performance guarantee - creating G'
Performance guarantee - creating G'

G

$s1$ $p1$ $l1$

$s2$ $p2$ $l2$

$s3$ $p3$

$s4$

2 spaces 2 spaces

1 space 2 spaces

G'

G

1

2

3

4

students

lecturer clones

M_{opt}

M
Performance guarantee - creating G'
Performance guarantee - creating G'

G

- $s1$ connected to $p1$, $l1$ with 2 spaces
- $s2$ connected to $p1$, $l1$ with 2 spaces
- $s3$ connected to $p2$, $l2$ with 1 space
- $s4$ connected to $p3$, $l2$ with 1 space

G'

- $s1$ connected to $p1$, $l1$ with 2 spaces
- $s2$ connected to $p1$, $l1$ with 2 spaces
- $s3$ connected to $p2$, $l2$ with 1 space
- $s4$ connected to $p3$, $l2$ with 1 space

M_{opt}

M'

Frances Cooper
Structures in G'
Structures in G'

• odd length alternating path with end edges in M'_{opt}
 (number of edges is 3)
Structures in G'

- odd length alternating path with end edges in M'_{opt}
 (number of edges is 3)

```
students

1 - 1

2 - 2

lecturer clones
```
Structures in G'

- odd length alternating path with end edges in M_{opt}' (number of edges is 3)

- odd length alternating path with end edges in M_{opt}' (number of edges is 1)
Structures in G'

- odd length alternating path with end edges in M'_{opt} (number of edges is 3)

- odd length alternating path with end edges in M'_{opt} (number of edges is 1)
Structures in G
Structures in G
Structures in \(G \)
Structures in G'
Structures in G'

Diagram of students and lecturers with connections labeled as $s1$, $p1$, $l1$, $s2$, $p2$, $l2$, $s1$, $p1$, $l1$, $s2$, $p2$, $l2$, $s1$, $p2$, $l1$, and $s2$, $p3$, $l2$. The diagram illustrates the relationships between students, lecturers, and clones in the context of the graph G'. The nodes are connected with lines indicating the relationships and interactions.
Structures in G'

- Students: s_1, s_2
- Lecturers: l_1, l_2
- Clones: p_1, p_2, p_3

Diagram shows the relationships between the students, lecturers, and clones in graph G'.
Structures in G'
Structures in G
Integer Program
Integer Programming
Integer Programming
Integer Programming

• gives an optimal solution
Integer Programming

• gives an optimal solution

• novel work: stability constraints
Integer Programming

• gives an optimal solution

• novel work: stability constraints

• helped in correctness checking
Integer Programming

- gives an optimal solution
- novel work: stability constraints
- helped in correctness checking
- gives motivation for using approximation algorithm
Experimental results
Experimental Results
Experimental Results

- Java (and Gurobi), 100s of thousands of instances with varying parameters. Ran on approximation algorithm and integer program.
Experimental Results

- Java (and Gurobi), 100s of thousands of instances with varying parameters. Ran on approximation algorithm and integer program.

- Does the approximation algorithm stick to 2/3 the size of optimal? Or do we get close to maximum?
Experimental Results

• Java (and Gurobi), 100s of thousands of instances with varying parameters. Ran on approximation algorithm and integer program.

• Does the approximation algorithm stick to 2/3 the size of optimal? Or do we get close to maximum?

<table>
<thead>
<tr>
<th>Case</th>
<th>minimum A/Max</th>
<th>average size A/Max</th>
<th>Min/Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIES1</td>
<td>1.0000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>TIES2</td>
<td>0.9792</td>
<td>0.997</td>
<td>0.987</td>
</tr>
<tr>
<td>TIES3</td>
<td>0.9722</td>
<td>0.993</td>
<td>0.972</td>
</tr>
<tr>
<td>TIES4</td>
<td>0.9655</td>
<td>0.990</td>
<td>0.958</td>
</tr>
<tr>
<td>TIES5</td>
<td>0.9626</td>
<td>0.986</td>
<td>0.942</td>
</tr>
<tr>
<td>TIES6</td>
<td>0.9558</td>
<td>0.984</td>
<td>0.927</td>
</tr>
<tr>
<td>TIES7</td>
<td>0.9486</td>
<td>0.982</td>
<td>0.911</td>
</tr>
<tr>
<td>TIES8</td>
<td>0.9527</td>
<td>0.980</td>
<td>0.896</td>
</tr>
<tr>
<td>TIES9</td>
<td>0.9467</td>
<td>0.980</td>
<td>0.880</td>
</tr>
<tr>
<td>TIES10</td>
<td>0.9529</td>
<td>0.982</td>
<td>0.866</td>
</tr>
<tr>
<td>TIES11</td>
<td>0.9467</td>
<td>0.984</td>
<td>0.851</td>
</tr>
</tbody>
</table>

• TIES - 10,000 instances per set, 300 students, 250 projects (capacity 420), 120 lecturers (capacity 360), pref lists length 3 to 5.
Experimental Results

- Java (and Gurobi), 100s of thousands of instances with varying parameters. Ran on approximation algorithm and integer program.

- Does the approximation algorithm stick to 2/3 the size of optimal? Or do we get close to maximum?

<table>
<thead>
<tr>
<th>Case</th>
<th>minimum A/Max</th>
<th>average A/Max</th>
<th>Min/Max A/Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIES1</td>
<td>1.0000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>TIES2</td>
<td>0.9792</td>
<td>0.997</td>
<td>0.987</td>
</tr>
<tr>
<td>TIES3</td>
<td>0.9722</td>
<td>0.993</td>
<td>0.972</td>
</tr>
<tr>
<td>TIES4</td>
<td>0.9655</td>
<td>0.990</td>
<td>0.958</td>
</tr>
<tr>
<td>TIES5</td>
<td>0.9626</td>
<td>0.986</td>
<td>0.942</td>
</tr>
<tr>
<td>TIES6</td>
<td>0.9558</td>
<td>0.984</td>
<td>0.927</td>
</tr>
<tr>
<td>TIES7</td>
<td>0.9486</td>
<td>0.982</td>
<td>0.911</td>
</tr>
<tr>
<td>TIES8</td>
<td>0.9527</td>
<td>0.980</td>
<td>0.896</td>
</tr>
<tr>
<td>TIES9</td>
<td>0.9467</td>
<td>0.980</td>
<td>0.880</td>
</tr>
<tr>
<td>TIES10</td>
<td>0.9529</td>
<td>0.982</td>
<td>0.866</td>
</tr>
<tr>
<td>TIES11</td>
<td>0.9467</td>
<td>0.984</td>
<td>0.851</td>
</tr>
</tbody>
</table>

- TIES - 10,000 instances per set, 300 students, 250 projects (capacity 420), 120 lecturers (capacity 360), pref lists length 3 to 5.

- increasing prob of student and lecturer ties from 0 to 0.5 in 0.05 steps
Experimental Results

• Java (and Gurobi), 100s of thousands of instances with varying parameters. Ran on approximation algorithm and integer program.

• Does the approximation algorithm stick to 2/3 the size of optimal? Or do we get close to maximum?

<table>
<thead>
<tr>
<th>Case</th>
<th>minimum A/Max</th>
<th>average size A/Max</th>
<th>Min/Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIES1</td>
<td>1.0000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>TIES2</td>
<td>0.9792</td>
<td>0.997</td>
<td>0.987</td>
</tr>
<tr>
<td>TIES3</td>
<td>0.9722</td>
<td>0.993</td>
<td>0.972</td>
</tr>
<tr>
<td>TIES4</td>
<td>0.9655</td>
<td>0.990</td>
<td>0.958</td>
</tr>
<tr>
<td>TIES5</td>
<td>0.9626</td>
<td>0.986</td>
<td>0.942</td>
</tr>
<tr>
<td>TIES6</td>
<td>0.9558</td>
<td>0.984</td>
<td>0.927</td>
</tr>
<tr>
<td>TIES7</td>
<td>0.9486</td>
<td>0.982</td>
<td>0.911</td>
</tr>
<tr>
<td>TIES8</td>
<td>0.9527</td>
<td>0.980</td>
<td>0.896</td>
</tr>
<tr>
<td>TIES9</td>
<td>0.9467</td>
<td>0.980</td>
<td>0.880</td>
</tr>
<tr>
<td>TIES10</td>
<td>0.9529</td>
<td>0.982</td>
<td>0.866</td>
</tr>
<tr>
<td>TIES11</td>
<td>0.9467</td>
<td>0.984</td>
<td>0.851</td>
</tr>
</tbody>
</table>

• TIES - 10,000 instances per set, 300 students, 250 projects (capacity 420), 120 lecturers (capacity 360), pref lists length 3 to 5.

• Increasing prob of student and lecturer ties from 0 to 0.5 in 0.05 steps

• Average approx solution closer to optimal than minimum in all cases
Experimental Results
Experimental Results

Scalability

<table>
<thead>
<tr>
<th>Case</th>
<th>A</th>
<th>Max</th>
<th>A</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALS1</td>
<td>10</td>
<td>10</td>
<td>1393.8</td>
<td>227764.3</td>
</tr>
<tr>
<td>SCALS2</td>
<td>10</td>
<td>9</td>
<td>5356.7</td>
<td>1096045.6</td>
</tr>
<tr>
<td>SCALS3</td>
<td>10</td>
<td>0</td>
<td>13095.3</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALS4</td>
<td>10</td>
<td>0</td>
<td>18883.5</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALS5</td>
<td>10</td>
<td>0</td>
<td>20993.0</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALP1</td>
<td>10</td>
<td>9</td>
<td>193.3</td>
<td>94242.9</td>
</tr>
<tr>
<td>SCALP2</td>
<td>10</td>
<td>10</td>
<td>189.4</td>
<td>631225.2</td>
</tr>
<tr>
<td>SCALP3</td>
<td>10</td>
<td>3</td>
<td>196.6</td>
<td>882251.0</td>
</tr>
<tr>
<td>SCALP4</td>
<td>10</td>
<td>1</td>
<td>248.5</td>
<td>1594201.0</td>
</tr>
<tr>
<td>SCALP5</td>
<td>10</td>
<td>0</td>
<td>283.7</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALP6</td>
<td>10</td>
<td>0</td>
<td>288.4</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Experimental Results

Scalability

- SCALS - 10,000 students up to 50,000 students. Pref lists 3 to 5 and ties 0.2

<table>
<thead>
<tr>
<th>Case</th>
<th>A</th>
<th>Max</th>
<th>A</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALS1</td>
<td>10</td>
<td>10</td>
<td>1393.8</td>
<td>227764.3</td>
</tr>
<tr>
<td>SCALS2</td>
<td>10</td>
<td>9</td>
<td>5356.7</td>
<td>1096045.6</td>
</tr>
<tr>
<td>SCALS3</td>
<td>10</td>
<td>0</td>
<td>13095.3</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALS4</td>
<td>10</td>
<td>0</td>
<td>18883.5</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALS5</td>
<td>10</td>
<td>0</td>
<td>20993.0</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALP1</td>
<td>10</td>
<td>9</td>
<td>193.3</td>
<td>94242.9</td>
</tr>
<tr>
<td>SCALP2</td>
<td>10</td>
<td>10</td>
<td>189.4</td>
<td>631225.2</td>
</tr>
<tr>
<td>SCALP3</td>
<td>10</td>
<td>3</td>
<td>196.6</td>
<td>882251.0</td>
</tr>
<tr>
<td>SCALP4</td>
<td>10</td>
<td>1</td>
<td>248.5</td>
<td>1594201.0</td>
</tr>
<tr>
<td>SCALP5</td>
<td>10</td>
<td>0</td>
<td>283.7</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALP6</td>
<td>10</td>
<td>0</td>
<td>288.4</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Experimental Results

Scalability

- SCALS - 10,000 students up to 50,000 students. Pref lists 3 to 5 and ties 0.2

- SCALP - 500 students, ties 0.4, Pref lists increased from 25 to 150 in steps of 25.

<table>
<thead>
<tr>
<th>Case</th>
<th>A</th>
<th>Max</th>
<th>A</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALS1</td>
<td>10</td>
<td>10</td>
<td>1393.8</td>
<td>227764.3</td>
</tr>
<tr>
<td>SCALS2</td>
<td>10</td>
<td>9</td>
<td>5356.7</td>
<td>1096045.6</td>
</tr>
<tr>
<td>SCALS3</td>
<td>10</td>
<td>0</td>
<td>13095.3</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALS4</td>
<td>10</td>
<td>0</td>
<td>18883.5</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALS5</td>
<td>10</td>
<td>0</td>
<td>20993.0</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALP1</td>
<td>10</td>
<td>9</td>
<td>193.3</td>
<td>94242.9</td>
</tr>
<tr>
<td>SCALP2</td>
<td>10</td>
<td>10</td>
<td>189.4</td>
<td>631225.2</td>
</tr>
<tr>
<td>SCALP3</td>
<td>10</td>
<td>3</td>
<td>196.6</td>
<td>882251.0</td>
</tr>
<tr>
<td>SCALP4</td>
<td>10</td>
<td>1</td>
<td>248.5</td>
<td>1594201.0</td>
</tr>
<tr>
<td>SCALP5</td>
<td>10</td>
<td>0</td>
<td>283.7</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALP6</td>
<td>10</td>
<td>0</td>
<td>288.4</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Experimental Results

Scalability

- SCALS - 10,000 students up to 50,000 students. Pref lists 3 to 5 and ties 0.2

- SCALP - 500 students, ties 0.4, Pref lists increased from 25 to 150 in steps of 25.

- much faster than using the integer program

<table>
<thead>
<tr>
<th>Case</th>
<th>A</th>
<th>Max</th>
<th>A</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALS1</td>
<td>10</td>
<td>10</td>
<td>1393.8</td>
<td>227764.3</td>
</tr>
<tr>
<td>SCALS2</td>
<td>10</td>
<td>9</td>
<td>5356.7</td>
<td>1096045.6</td>
</tr>
<tr>
<td>SCALS3</td>
<td>10</td>
<td>0</td>
<td>13095.3</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALS4</td>
<td>10</td>
<td>0</td>
<td>18883.5</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALS5</td>
<td>10</td>
<td>0</td>
<td>20993.0</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALP1</td>
<td>10</td>
<td>9</td>
<td>193.3</td>
<td>94242.9</td>
</tr>
<tr>
<td>SCALP2</td>
<td>10</td>
<td>10</td>
<td>189.4</td>
<td>631225.2</td>
</tr>
<tr>
<td>SCALP3</td>
<td>10</td>
<td>3</td>
<td>196.6</td>
<td>882251.0</td>
</tr>
<tr>
<td>SCALP4</td>
<td>10</td>
<td>1</td>
<td>248.5</td>
<td>1594201.0</td>
</tr>
<tr>
<td>SCALP5</td>
<td>10</td>
<td>0</td>
<td>283.7</td>
<td>N/A</td>
</tr>
<tr>
<td>SCALP6</td>
<td>10</td>
<td>0</td>
<td>288.4</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Experimental Results
Experimental Results

- So is it worth using?
Experimental Results

• So is it worth using?

• Coram - assigning adopted children to families. ~ 100’s of agents. Preference lists long and probability of ties high
Experimental Results

- So is it worth using?

- Coram - assigning adopted children to families. ~ 100’s of agents. Preference lists long and probability of ties high

- 21 instances, increasing difficulty. Initial IP could only solve first 6 within 5 minutes, approximation algorithm took less than 2 seconds for each
Future Work
Future Work

• Finding an approximation algorithm with a better performance guarantee than 3/2
Future Work

- Finding an approximation algorithm with a better performance guarantee than 3/2
- Finding a better inapproximability result than 33/29

Approximation Algorithms for Stable Matching Problems; PhD thesis; 2007; H. Yanagisawa
Future Work

• Finding an approximation algorithm with a better performance guarantee than 3/2

• Finding a better inapproximability result than 33/29

• coalitions:

Approximation Algorithms for Stable Matching Problems; PhD thesis; 2007; H. Yanagisawa
Future Work

- Finding an approximation algorithm with a better performance guarantee than 3/2

- Finding a better inapproximability result than 33/29

- coalitions:
 - group of several students and lecturers

Approximation Algorithms for Stable Matching Problems; PhD thesis; 2007; H. Yanagisawa
Future Work

• Finding an approximation algorithm with a better performance guarantee than 3/2

• Finding a better inapproximability result than 33/29

• coalitions:
 • group of several students and lecturers
 • permute their assignments

Approximation Algorithms for Stable Matching Problems; PhD thesis; 2007; H. Yanagisawa
Future Work

• Finding an approximation algorithm with a better performance guarantee than $3/2$

• Finding a better inapproximability result than $33/29$

• coalitions:
 • group of several students and lecturers
 • permute their assignments
 • some or all get a better outcome

Approximation Algorithms for Stable Matching Problems; PhD thesis; 2007; H. Yanagisawa
Thank you

Summary

• Student-project allocation problem

• Finding a maximum stable matching
 • Integer programming
 • Approximation algorithm

• Future work: improved performance guarantee; improved inapproximability result; coalitions