

Cooper, Frances (2020) Fair and large stable matchings in the stable

marriage and student-project allocation problems. PhD thesis.

http://theses.gla.ac.uk/81622/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://theses.gla.ac.uk/81622/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

FAIR AND LARGE STABLE MATCHINGS IN

THE STABLE MARRIAGE AND

STUDENT-PROJECT ALLOCATION

PROBLEMS

FRANCES COOPER

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

SEPTEMBER 1, 2020

c© FRANCES COOPER

Abstract

In this thesis, we present new algorithmic and complexity results for specific matching prob-
lems involving preferences. In particular we study the Stable Marriage problem (SM) and
the Student-Project Allocation problem (SPA) and their variants. A matching in these sce-
narios is an allocation of men to women (SM) or students to projects (SPA). Primarily we are
interested in finding matchings that are stable. A stable matching is a matching that admits
no blocking pair, which is a pair of agents (not already allocated together) who would rather
deviate from the given matching and become assigned to each other. In addition to stability,
other objectives may be applied. We focus on finding either fair or large stable matchings in
SM and SPA.

In the Stable Marriage problem with Incomplete lists (SMI), the rank of a matched man
or woman, with respect to a matching, is the position of their assigned partner on their
preference list. The degree of the set of men in a matching is the rank of a worst-off man,
over all matched men. A similar definition exists for the set of women. The cost of the set of
men in a matching is sum of ranks of all matched men. Again a similar definition exists for
the set of women. We introduce the following degree-based definitions of fairness in SMI.
A stable matching is regret-equal if it minimises the difference in degree between the set
of men and the set of women, over all stable matchings. Additionally, a stable matching is
min-regret sum if it minimises the sum of the degree of men and the degree of women, over
all stable matchings. We present polynomial-time algorithms to find these types of fair stable
matchings, given an instance of SMI, and perform experiments to both test the performance
of two algorithms to find a regret-equal stable matching, and to compare properties of several
other types of fair stable matchings over both degree- and cost-based measures.

Also in SMI, we investigate fairness in the form of profile-based stable matchings. The pro-

file of a matching is a vector of integers, where the ith vector element indicates the number of
agents assigned to their ith-choice partner. A stable matching is rank-maximal if its profile
is lexicographically maximum taken over all stable matchings. A stable matching is gener-

ous if its reverse profile is lexicographically minimum taken over all stable matchings. A
polynomial-time algorithm exists to find a rank-maximal stable matching, using weights that
are exponential in the number of men or women [32]. We adapt this algorithm to work with

polynomially-bounded weight vectors, and show using randomly-generated instances that
our approach is significantly less costly in terms of space. Further experiments are carried
out to compare these profile-based optimal matchings over several cost- and profile-based
fairness properties. We additionally show that in the Stable Roommates problem, each of
the problems of finding a rank-maximal stable matching or a generous stable matching is
NP-hard.

In the Student-Project Allocation problem with lecturer preferences over Students including
Ties (SPA-ST) we study the problem of finding large stable matchings. A 3

2
-approximation

algorithm exists to find a maximum-sized stable matching in HRT, and we extend this to the
SPA-ST case, developing a linear-time 3

2
-approximation algorithm for the problem of finding

a maximum-sized stable matching in SPA-ST. We test the performance of our approximation
algorithm using the implementation of a new Integer Programming (IP) model that finds a
maximum-sized stable matching, and show that in practice, our approximation algorithm
produces stable matchings of size far closer to optimal than the 3

2
bound. Additionally, we

give an example to show that this bound is tight.

Finally, we look at fairness in the context of the Student-Project Allocation problem with lec-
turer preferences over Students including Ties and Lecturer targets (SPA-STL), an extension
to SPA-ST in which each lecturer has an associated target, indicating their preferred number
of allocations (or the number of allocations preferred by the matching scheme administrator).
We first investigate load balancing without the presence of stability. A load-max-balanced

matching is a matching in which the maximum difference between a lecturer’s target and
their number of allocations is minimised. A load-sum-balanced matching is a matching in
which the sum of differences between all lecturers’ targets and their number of allocations is
minimised. Finally, a load-balanced matching is a matching that is both load-max-balanced
and load-sum-balanced. We provide new polynomial-time algorithms to find matchings of
these types. Additionally we show that in the presence of stability, each of the problems of
finding a stable matching that is load-max-balanced, load-sum-balanced or load-balanced is
NP-hard. Finally, we present new IP models for finding such types of optimal stable match-
ing.

Acknowledgements

I would like to thank my supervisor, Prof. David Manlove for his fantastic support and
guidance throughout the duration of my PhD. Thank you also to my second supervisor Dr.
Kitty Meeks who was always on hand to offer advice, and to my examiners Dr. Jess Enright
and Prof. Prudence Wong for their detailed feedback on my thesis.

A massive thank you to all the people who I met during my PhD and who have made my time
at Glasgow unforgettable. Finally, thank you to my family for their unwaivering support, to
Chris for keeping me sane and to Gözel for keeping me mad.

Publications

• F. Cooper and D.F. Manlove. A 3/2-Approximation Algorithm for the Student-Project
Allocation Problem. In Proceedings of SEA 2018: the 17th International Sympo-

sium on Experimental Algorithms, volume 103 of Leibniz International Proceedings

in Informatics (LIPIcs), article 8 pages 1-13, 2018. Available at https://doi.
org/10.4230/LIPIcs.SEA.2018.8. This article highlights the main algorith-
mic and experimental results from Chapter 5 and the first half of Chapter 6. The
full version, which additionally includes all proofs relating to the above, is avail-
able as Technical Report number 1804.02731, ArXiv, 2018. Available at https:
//arxiv.org/abs/1804.02731.

• F. Cooper and D.F. Manlove. Algorithms for new types of fair stable matchings. In
Proceedings of SEA 2020: the 18th International Symposium on Experimental Algo-

rithms, volume 160 of Leibniz International Proceedings in Informatics (LIPIcs), ar-
ticle 20 pages 1-13, 2020. Avaliable at https://doi.org/10.4230/LIPIcs.
SEA.2020.20. This article presents the main algorithmic and experimental results
from Chapter 3 except Algorithm RESP. The full version, which additionally includes
all proofs relating to the above, is avaliable as Technical Report number 2001.10875,
ArXiv, 2020. Available at https://arxiv.org/abs/2001.10875.

https://doi.org/10.4230/LIPIcs.SEA.2018.8
https://doi.org/10.4230/LIPIcs.SEA.2018.8
https://arxiv.org/abs/1804.02731
https://arxiv.org/abs/1804.02731
https://doi.org/10.4230/LIPIcs.SEA.2020.20
https://doi.org/10.4230/LIPIcs.SEA.2020.20
https://arxiv.org/abs/2001.10875

Education Use Consent

I hereby give my permission for this project to be shown to other University of Glasgow
students and to be distributed in an electronic format.

Frances Cooper

Table of Contents

1 Introduction 1

2 Literature review 7

2.1 The House Allocation problem (HA) . 7

2.2 The Stable Marriage problem (SM) . 9

2.2.1 Introduction . 9

2.2.2 The Stable Marriage problem with Incomplete lists (SMI) 9

2.2.2.1 Formal definitions . 9

2.2.2.2 Fairness . 11

2.2.2.3 Structure of stable matchings 13

2.2.3 The Stable Marriage problem with Ties and Incomplete lists (SMTI) 14

2.3 The Stable Roommates problem (SR) . 17

2.4 The Hospitals/Residents problem (HR) . 19

2.4.1 Introduction . 19

2.4.2 Variants of HR . 20

2.5 The Student-Project Allocation problem (SPA) 21

2.5.1 Introduction . 21

2.5.2 The Student-Project Allocation problem with lecturer preferences
over Students (SPA-S) . 21

2.5.2.1 Formal definitions . 21

2.5.2.2 The Student-Project Allocation problem with lecturer pref-
erences over Students including Ties (SPA-ST) 23

2.5.2.3 The Student-Project Allocation problem with lecturer pref-
erences over Students including Ties and Lecturer targets
(SPA-STL) . 24

2.5.3 The Student-Project Allocation problem with lecturer preferences
over Projects (SPA-P) . 24

3 Degree-based stable matchings in SMI 26

3.1 Introduction . 26

3.1.1 Background . 26

3.1.2 Motivation . 27

3.1.3 Contribution . 28

3.1.4 Structure of the chapter . 28

3.2 Preliminary definitions . 29

3.3 Regret-Equal Degree Iteration Algorithm 29

3.3.1 Description of the Algorithm . 29

3.3.2 Correctness Proof . 31

3.3.3 Time complexity . 36

3.4 Regret-Equal Stable Pair Algorithm . 37

3.4.1 Description of the Algorithm . 37

3.4.2 Correctness Proof . 39

3.4.3 Time complexity . 46

3.5 Regret-equal stable matchings with minimum cost 47

3.6 Algorithm to find a min-regret sum stable matching 48

3.7 Experiments . 50

3.7.1 Methodology . 50

3.7.2 Experimental results summary . 52

3.8 Conclusions and future work . 59

4 Profile-based stable matchings in SMI 61

4.1 Introduction . 61

4.1.1 Background . 61

4.1.2 Motivation . 62

4.1.3 Contribution . 63

4.1.4 Structure of the chapter . 64

4.2 Preliminary definitions and results . 64

4.3 Finding a rank-maximal stable matching using exponential weights 66

4.3.1 Exponential weight network . 66

4.3.2 Maximum weight closed subset of Rp(I) 68

4.4 Finding a rank-maximal stable matching using polynomially-bounded weight
vectors . 69

4.4.1 Strategy . 69

4.4.2 Vb-networks and vb-flows . 69

4.4.3 Rank-maximal stable matchings 73

4.5 Generous stable matchings . 79

4.6 Complexity of finding profile-based stable matchings in SR 83

4.7 Experiments and evaluations . 87

4.7.1 Methodology . 87

4.7.2 Experimental results summary . 89

4.8 Conclusions and future work . 96

5 Large stable matchings in SPA-ST 98

5.1 Introduction . 98

5.1.1 Background . 98

5.1.2 Motivation . 98

5.1.3 Contribution . 99

5.1.4 Structure of the chapter . 99

5.2 Preliminary definitions . 99

5.3 Cloning from SPA-ST to SMTI . 100

5.4 3
2
-approximation algorithm . 106

5.4.1 Introduction and preliminary definitions 106

5.4.2 Description of the algorithm . 106

5.4.3 Example execution of the algorithm 110

5.5 3
2
-approximation algorithm correctness proofs 113

5.5.1 Introduction . 113

5.5.2 Proofs of preliminary results . 113

5.5.3 Stability . 119

5.5.4 Time complexity and termination 124

5.5.5 Performance guarantee . 132

5.5.5.1 Introduction . 132

5.5.5.2 Preliminary definitions 133

5.5.5.3 Example mapped graph 133

5.5.5.4 Components in G′ . 136

5.5.5.5 Proof of the 3
2

performance guarantee 136

5.5.6 Lower bound for the algorithm . 150

5.6 Conclusions and future work . 151

6 Experiments and IP models for SPA-ST and lecturer load balancing for SPA-STL153

6.1 Introduction . 153

6.1.1 Background . 153

6.1.2 Motivation . 154

6.1.3 Contribution . 154

6.1.4 Structure of the chapter . 155

6.2 IP model and experiments for SPA-ST . 155

6.2.1 Introduction . 155

6.2.2 IP model for MAX-SPA-ST . 155

6.2.2.1 Stability definition . 155

6.2.2.2 Description of variables and constraints 156

6.2.2.3 Proof of correctness . 158

6.2.3 Experimental evaluation . 160

6.2.3.1 Methodology . 160

6.2.3.2 Experimental results . 162

6.3 Load balancing in SPA-STL . 166

6.3.1 Introduction . 166

6.3.2 Motivation for studying load-balanced matchings 166

6.3.3 Load balancing algorithms . 168

6.3.3.1 Introduction . 168

6.3.3.2 Load-sum-balanced matchings 168

6.3.3.3 Load-balanced matchings 171

6.3.3.4 Maximum load-max-balanced matchings 177

6.3.4 Stability with load balancing . 179

6.3.5 IP models . 182

6.3.5.1 IP model for a load-max-balanced stable matching 182

6.3.5.2 IP model for a load-balanced stable matching 184

6.4 Conclusions and future work . 186

7 Conclusions and open problems 188

Bibliography 191

A Degree-based stable matchings in SMI – supplementary material 198

A.1 Experimental work supplement . 198

B Profile-based stable matchings in SMI – supplementary material 204

B.1 Experimental work supplement . 204

C Large stable matchings in SPA-ST – supplementary material 210

C.1 Further discussion on Király’s 3
2
-approximation algorithm for SMTI 210

D Experiments and further results for SPA-ST – supplementary material 213

D.1 Experimental work supplement . 213

List of Tables

3.1 Commonly used definitions of fair stable matchings in SMI. 27

3.2 SM instance I0 with stable matchings M1, M2, M3 and M4. 48

3.3 General instance and algorithm timeout results. 56

4.1 General instance information and algorithm timeout results. 93

5.1 Trace of running Király’s SMTI 3
2
-approximation algorithm for instance I ′′1 . 105

5.2 Detailed trace of running Algorithm Max-SPA-ST-Approx for instance I3. 112

5.3 Trace of running Algorithm Max-SPA-ST-Approx for instance I5. 151

6.1 Examples of lecturer allocations in I0 and I1. 167

A.1 A comparison of time taken to execute Algorithm REDI, Algorithm RESP
and Algorithm ENUM. 199

A.2 Mean balanced score for six different optimal stable matchings and outputs
from Algorithms REDI and RESP. 200

A.3 Mean sex-equal score for six different optimal stable matchings and outputs
from Algorithms REDI and RESP. 200

A.4 Mean cost for six different optimal stable matchings and outputs from Algo-
rithms REDI and RESP. 201

A.5 Mean degree for six different optimal stable matchings and outputs from
Algorithms REDI and RESP. 201

A.6 Mean regret-equality score for six different optimal stable matchings and
output from Algorithms REDI and RESP. 202

A.7 Mean regret sum for six different optimal stable matchings and outputs from
Algorithms REDI and RESP. 202

A.8 Mean number of optimal stable matchings per instance. 203

A.9 Mean number of stable matchings that satisfy c optimality criteria, where c
varies on the x-axis. 203

B.1 Optimal costs and sex-equal scores. 205

B.2 Results for rank-maximal stable matchings over various measures. 206

B.3 Results for generous stable matchings over various measures. 207

B.4 Results for median stable matchings over various measures. 208

B.5 Comparison of the minimum number of bits required to store edge capacities
of a network and vb-network. 209

C.1 Trace of running Király’s SMTI 3
2
-approximation algorithm for instance I ′′2 . 212

D.1 Comparison of the size of the stable matching returned by the approxima-
tion algorithm, and the minimum and maximum stable matching sizes, with
increasing instance size. 213

D.2 Comparison of the size of the stable matching returned by the approxima-
tion algorithm, and the minimum and maximum stable matching sizes, with
increasing probability of ties. 214

D.3 Comparison of the size of the stable matching returned by the approxima-
tion algorithm, and the minimum and maximum stable matching sizes, with
increasing student preference list length. 214

D.4 Comparisons of the matching output by the approximation algorithm, and IP
model implementation outputs, with increasing instance size. 215

D.5 Comparisons of the matching output by the approximation algorithm, and IP
model implementation outputs, with increasing probability of ties. 215

D.6 Comparisons of the matching output by the approximation algorithm, and IP
model implementation outputs, with increasing student preference list length. 216

D.7 Scalability experiment results. 216

List of Figures

2.1 SMI instance I0. 10

2.2 Rotations for instance I0. 13

2.3 Rotation poset and digraph of I0. 14

2.4 Stable matchings for instance I0. 15

2.5 SMTI instance I1. 15

2.6 Stable matchings for instance I1. 16

2.7 SMTI instance I2. 17

2.8 SRI instance I3. 18

2.9 SPA-S instance I4. 22

3.1 Possible regret-equal degree pairs when d′(M0) = (a0, b0), n ≥ 2b0−a0− 1

and a0 − d0 + 1 ≥ 1. 32

3.2 Possible regret-equal degree pairs when d′(M0) = (2, 6) and n ≥ 9. 32

3.3 Degree pairs in column k = dU(M) for instance I 34

3.4 Degree pairs in P = {2, 3, 4, 5} × {4, 5, 6, 7}. 46

3.5 A log plot of the time taken to execute Algorithms REDI, RESP and ENUM. 56

3.6 Plots of experiments to compare six different optimal stable matchings over
a range of measures. 57

3.7 Bar chart of the mean number of stable matchings for different types of op-
timal matchings. 58

3.8 Bar chart of the mean number of stable matchings which satisfy different
numbers of optimal stable matching criteria. 58

4.1 The high-weight network Rn(I0). 68

4.2 The profile and absolute profile for rotations of I0. 71

4.3 Vector-based network R′n(I0) and network Rn(I0). 72

4.4 Maximum vb-flow and flow in the networks R′n(I0) and Rn(I0). 76

4.5 Creation of an instance I of SR. 84

4.6 SM instance I1. 92

4.7 Plot of the mean number of stable matchings. 93

4.8 Plot of the mean number of first choices for rank-maximal, median and gen-
erous stable matchings. 94

4.9 Plot of the mean degree for rank-maximal, median and generous stable match-
ings. 94

4.10 Plot of the mean cost for rank-maximal, median, generous and egalitarian
stable matchings. 95

4.11 A log-log plot of the mean sex-equal score for rank-maximal, median, gen-
erous and sex-equal stable matchings. 95

4.12 A log-log plot of the number of bits required to store a network and vb-network. 96

5.1 Conversion of a stable matching in HRT into a matching in SPA-ST. 103

5.2 Conversion of an SPA-ST instance to an SMTI instance. 104

5.3 SPA-ST instance I3. 110

5.4 Data structures guide for Lemma 5.5.15 126

5.5 SPA-ST instance I4. 135

5.6 Example illustrating the underlying graph G and mapped graph G′ of in-
stance I4. 135

5.7 Possible component structures in G′. 137

5.8 Possible configurations in G for an alternating path of size 3 in G′. 142

5.9 SPA-ST instance I5 in which Algorithm Max-SPA-ST-Approx finds a stable
matching two-thirds of the size of optimal. 151

6.1 IP model for MAX-SPA-ST. 157

6.2 Plot of the size of stable matching returned by the approximation algorithm,
and the minimum and maximum stable matching sizes 164

6.3 Plot of the size of stable matching returned by the approximation algorithm,
and the minimum and maximum stable matching sizes, with increasing prob-
ability of ties. 165

6.4 Plot of the size of stable matching returned by the approximation algorithm,
and the minimum and maximum stable matching sizes, with increasing stu-
dent preference list length. 165

6.5 SPA-STL instance I2 and associated network N(I2). 170

6.6 Flows through N(I2) during the execution of Algorithm Load-Bal. 174

6.7 Flows through N(I2) after the final augmentation on Line 21 of Algorithm
Load-Max-Bal-Max. 178

6.8 SPA-STL instance I3. 179

6.9 IP model for finding a load-max-balanced stable matching. 183

6.10 IP model constraint for finding a load-max-balanced stable matching. . . . 184

6.11 IP model for finding a load-balanced stable matching. 185

7.1 Example of a blocking coalition in an instance I0 of SPA-ST. 189

C.1 Conversion of an SPA-ST instance to an SMTI instance. 211

List of Algorithms

3.1 REDI(I), returns a regret-equal stable matching for an instance of SMI. . . . 33

3.2 REDI-Col(I,M,Q,Mopt), subroutine for Algorithm 3.1. 34

3.3 RESP(I), returns a regret-equal stable matching for an instance of SMI. . . 40

3.4 RESP-Truncate(I, (a, b)), subroutine for Algorithm 3.3. 41

3.5 RESP-Filter(I, R,MT
0 ,M

T
z), subroutine for Algorithm 3.3. 41

3.6 MRS(I), returns a min-regret sum stable matching for an instance of SMI. . 49

5.1 Clone-SPA-ST, converts an SPA-ST instance into an HRT instance. 101

5.2 Max-SPA-ST-Approx(I), 3
2
-approximation algorithm for SPA-ST. 108

5.3 Remove-Pref(si, pj), subroutine for Algorithm 5.2. 109

5.4 Promote-Students(M), subroutine for Algorithm 5.2. 109

5.5 Promote-Students(M), subroutine for Algorithm 5.2 (detailed view). . . . 131

5.6 Create-Mapped(M), obtains a set of edges M ′ for the mapped graph G′

corresponding to edges in M\Mopt. 134

6.1 Load-Bal(I), returns a load-balanced matching for an instance of SPA-STL. 172

6.2 Max-Load-Max-Bal(I), adaptation to Algorithm 6.1 which returns a maxi-

mum load-max-balanced matching for an instance of SPA-STL. 177

Acronyms

(3, 3)-COM-SMTI The problem of finding a maximum stable matching in SMTI, such that
each man’s preference list is strictly ordered and of length 3, and, each woman’s pref-
erence list is either strictly ordered and of length 3, or is a tie of length 2. 176

CHA Capacitated House Allocation problem. 7

CHAT Capacitated House Allocation problem with Ties. 7

GENSR The problem of finding a generous stable matching in SR. 81

HA House Allocation problem. 4, 6, 7, 127

HAT House Allocation problem with Ties. 7

HR Hospitals/Residents problem. 1–4, 6, 9, 18–20, 57

HR-GR Hospitals/Residents problem with Grouped Residents. 57, 58

HRC Hospitals/Residents problem with Couples. 19

HRT Hospitals/Residents problem with Ties. 2, 3, 5, 19, 22, 95–98, 100, 101, 103, 110, 182,
203

HRTH Hospitals/Residents problem with Ties and Hospital targets. 182

LBS-SPA-STL The problem of finding a load-balanced stable matching in SPA-STL. 175

LMBS-SPA-STL The problem of finding a load-max-balanced stable matching in SPA-STL.
175

LSBS-SPA-STL The problem of finding a load-sum-balanced stable matching in SPA-STL.
175

MAX-HRT The problem of finding a maximum stable matching in HRT. 2, 5, 19, 95, 96

MAX-SMTI The problem of finding a maximum stable matching in SMTI. 16, 22

MAX-SPA-P The problem of finding a maximum stable matching in SPA-P. 24

MAX-SPA-ST The problem of finding a maximum stable matching in SPA-ST. 3–5, 22, 95,
96, 146–148, 150–153, 157, 159

RMSR The problem of finding a rank-maximal stable matching in SR. 81

SAT Satisfiability Problems. 11, 60, 94

SM Stable Marriage problem. 8, 16, 46, 49, 61, 89, 90

SMI Stable Marriage problem with Incomplete lists. 3–6, 8–19, 25–28, 30, 32–36, 38–40,
43, 45, 47, 49, 51, 57–59, 61, 65, 66, 68, 72–74, 76, 77, 79–81, 85, 86, 94, 190

SMI-GW Stable Marriage problem with Incomplete lists and Grouped Women. 57, 58

SMTI Stable Marriage problem with Ties and Incomplete lists. 13–16, 18, 19, 22, 96, 97,
100–102, 110, 176, 202–204

SPA Student-Project Allocation problem. 20, 95

SPA-P Student Project Allocation problem with lecturer preferences over Projects. 20, 23,
24

SPA-S Student-Project Allocation problem with lecturer preferences over Students. 3, 4, 6,
20–24, 95, 174

SPA-SL Student-Project Allocation problem with lecturer preferences over Students and
Lecturer targets. 174

SPA-ST Student-Project Allocation problem with lecturer preferences over Students includ-
ing Ties. 3, 5, 22, 23, 95–98, 100, 101, 103, 105–107, 110, 128–132, 138, 146–151,
154–156, 174, 202, 203

SPA-STL Student-Project Allocation problem with lecturer preferences over Students includ-
ing Ties and Lecturer targets. 3–5, 22, 23, 149–151, 161, 163–165, 169, 173–175,
178–182

SR Stable Roommates problem. 4, 5, 16, 17, 59, 61, 62, 81, 82, 84, 94

SRI Stable Roommates problem with Incomplete lists. 16–18

SRTI Stable Roommates problem with Ties and Incomplete lists. 18

1

Chapter 1

Introduction

Matching problems arise when it is necessary to assign one or more sets of entities to each
other, based on preferences on one or both sides. Practical applications include the assign-
ment of kidney donors to patients, graduating medical students to hospitals, or applicants to
campus housing accommodation.

Manlove [47] describes a decentralised allocation mechanism as a process whereby the
agents involved are able to negotiate with one another directly to form allocations. These
free-for-all market scenarios often lead to several problems [70], such as entities forming
assignments with one another far earlier than the required deadline in order to secure an
assignment, potentially leading to less informed choices. Centralised matching schemes, in
which all preferences are collected by a third party and dealt with simultaneously by some
automated mechanism, avoid many of these problems. Such matching schemes arise in a
number of applications, including those mentioned above, and additionally in the assign-
ment of high-school students to university places in China [75]. This scheme requires all
students to sit National College Entrance Exams, the results of which are used, along with
student preferences, in the allocation process. Another example is a mechanism used in
Boston to assign students to schools based on parent preferences over schools and priorities
for children at schools [2]. It is clear from these examples that matching problem instances
may be extremely large, and as such require efficient algorithms to find suitable matchings.

In the application of assigning a set of graduating medical students to a set of hospitals, both
sets may have preferences over the other. Medical students may have preferences over hospi-
tals depending on hospital reputation or recommendation from other students, and hospitals
may have preferences over students due to grades achieved in their studies. This case, where
there are two disjoint sets of entities, both of which have preferences over the other, can be
modelled by the Hospitals/Residents problem (HR). An instance of HR comprises resident
and hospital agents with each resident ranking a subset of the hospitals (the resident’s ac-

ceptable hospitals) in order of preference and vice versa. A matching in an HR instance may

2

be defined as an assignment of residents to hospitals such that each resident is assigned to at
most one hospital on their preference list and each hospital is assigned zero or more residents
on their preference list up to a pre-determined capacity. A blocking pair in an HR matching
is defined as a resident-hospital pair who prefer each other to at least one of their assigned
partners (if any). A matching is considered stable if it admits no blocking pair. As Peran-
son and Randlett [65] discuss, the National Resident Matching Program is a long-standing
matching scheme in the US (estabished in 1952) which assigns graduating medical students
to hospitals, with the aim of producing a stable matching in the underlying HR instance.
Stability gives the assurance that there is no graduating medical student-hospital pair who
would have incentive to break their current assignments and become assigned to each other.
This is a highly important criteria in matching problems, as it leads to an allocation that is
robust against deviations of this form [67].

There may be many different stable matchings in an instance of HR, and which matching is
best will depend on the priorities of the matching scheme administrator. In order to discuss
various optimality criteria that an administrator may choose, we first define two measures as-
sociated with a matching in HR. The rank of an assigned resident, with respect to a matching,
is the position of their assigned hospital on their preference list. The profile of a matching is
a vector that indicates the number of agents with an assignment to their first-choice partner,
the number of agents with an assignment to their second-choice partner, and so on. Note
that since hospitals may be multiply assigned, they may contribute more than once to the
profile. Common optimality criteria in HR then include maximising the number of assigned
residents, minimising the sum of ranks over all assigned residents (possibly with a penalty
for unassigned residents), and various optimality criteria associated with the profile of a
matching, among the set of all stable matchings.

In the case of assigning graduating medical students to hospitals, hospital preference lists
may be very large. In such cases, it is not reasonable to expect hospitals to be able to rank
all students in strict preference order. This motivates the study of an extention to HR in
which indifference may be allowed in preference lists. The Hospitals/Residents problem
with Ties (HRT) is a generalisation of HR in which hospitals may have ties in their preference
lists indicating indifference between two or more residents, and vice versa. In HRT, stable
matchings may be of different sizes, and so this naturally leads to MAX-HRT, the problem
of finding a stable matching of maximum size (also known as a maximum stable matching).
MAX-HRT is NP-hard [51].

For NP-hard problems such as MAX-HRT, no efficient (polynomial-time) algorithm exists
unless P = NP. In such cases, one possibility is to settle for an approximation algorithm.
Approximation algorithms find a solution that need not be optimal, but is often close to opti-
mal in a precise sense, in polynomial time. The approximation factor of an approximation al-
gorithmA is a fraction indicating a guarantee on how close to optimal the algorithm achieves

3

in the worst case. Specifically, for a maximisation (respectively minimisation) problem, this
is the maximum ratio of the measure of an optimal (respectively approximate, produced by
A) solution to the measure of an approximate, produced byA (respectively optimal solution),
taken over all problem instances. A c-approximation algorithm is then an approximation al-
gorithm with approximation factor c. Király [40] developed a 3

2
-approximation algorithm for

the NP-hard problem of finding a maximum stable matching in an instance of HRT, which
will produce a stable matching that is at least two-thirds of the size of the maximum stable
matching. In some cases, however, we either require an optimal solution, or the NP-hard
problem in question cannot be approximated to a reasonable degree in polynomial time. In
such cases, an alternative is to formulate the problem using an Integer Programming (IP)
model. IP solvers use algorithms that run in exponential time in the worst case. Typically,
the more complex the problem is, the longer it will take to solve. However, IP solvers are
often able to find optimal solutions reasonably quickly, especially for less complex instances.

This thesis focusses on two types of matching problem. One is a special case of HR, and the
other a generalisation. A description of these matching problems now follows.

A special case of HR, known as the Stable Marriage problem with Incomplete lists (SMI)
comprises men and women as the agents, in which men take the place of residents and
women take the place of hospitals. The term ‘Incomplete lists’ refers to the fact that men
need only rank a subset of women in preference order, and vice versa. Each man or woman
may only be assigned a single partner in any matching. Analogous definitions of a stable

matching and the profile of a matching apply to SMI as in HR. The rank of an assigned man
(woman) is then the position of his (her) assigned partner on his (her) preference list. The
degree of a matching is given by the largest rank over all assigned men and women. Finally,
the cost of a matching is given by the sum of the ranks of all assigned men and women.

A generalised version of HR is known as the Student-Project Allocation problem with lecturer

preferences over Students (SPA-S). Here, we have a set of students, a set of projects and
a set of lecturers. Each project may only be supervised by a single lecturer but lecturers
may supervise multiple projects. Students have preferences over projects and lecturers have
preferences over students who rank at least one of their offered projects. Both projects
and lecturers have upper quotas associated with them indicating the maximum number of
allocations they are allowed. In this way, HR can be seen as a special case of SPA-S in which
each lecturer supervises a single project, with which they also share an identical capacity. An
extension to SPA-S, that allows ties in preference lists in an analogous way to HRT, is known
as SPA-ST. A stable matching in SPA-ST is a matching in which no student-lecturer pair has
reason to deviate from their allocations and assign to each other. SPA-ST is a generalisation of
HRT, and therefore has the same characteristics that stable matchings may be different sizes.
We define the problem of finding a maximum-sized stable matching (hereafter maximum

stable matching) as MAX-SPA-ST. MAX-SPA-ST is NP-hard [51]. A further extension is

4

known as SPA-STL (SPA-ST with lecturer targets, which indicate the preferred number of
allocations for each lecturer).

In this thesis, we concentrate on finding stable matchings with additional optimality criteria
in both SMI and SPA-S. In SMI we examine the problem of finding “fair” stable matchings,
that in some way balance the interests of both men and women. Several notions of fair-
ness already exist in this setting involving the cost, degree and profile of a stable matching.
We present new definitions of fairness in SMI, associated with the degree of a matching,
and develop efficient algorithms to find such matchings. Additionally, we adapt an existing
algorithm to find a profile-based fair stable matching, to work with a far reduced memory
load. Fairness is also examined with respect to lecturer loads in SPA-STL. In this scenario,
we study matchings that in some way balance lecturer allocation loads, with respect to their
targets, and present new definitions of load balancing in this context. We develop efficient
algorithms to find such matchings when stability is ignored, and show that when stability is
required, such matchings are NP-hard to find. In addition to fairness we study the problem
of finding large stable matchings, presenting a 3

2
-approximation algorithm for MAX-SPA-ST.

The remainder of this thesis is structured as follows.

• Chapter 2: Literature review. Chapter 2 describes several matching problems in more
detail including SMI, HR, SPA-S, and their extensions. Additionally, we describe the
House Allocation problem (HA), a special case of HR in which hospitals do not have
preferences over residents, and the Stable Roommates problem (SR), a generalisation
of SMI in which there is only one set of agents, each of whom has preferences over the
other agents. Relevant literature is also surveyed.

• Chapter 3: Degree-based stable matchings in SMI. In Chapter 3 we explore fair stable
matchings in SMI. We introduce two new notions of fairness involving the degree of a
matching. Firstly, a regret-equal stable matching minimises the difference in the ranks
between a worst-off man and a worst-off woman, among all stable matchings. Sec-
ondly, a min-regret sum stable matching minimises the sum of the ranks of a worst-off
man and a worst-off woman, among all stable matchings. In this chapter, we present
new efficient algorithms to find stable matchings of these types. Experiments to com-
pare several types of fair optimal stable matchings were conducted and show that our
new algorithm to find a regret-equal stable matching produces matchings that are com-
petitive with respect to other existing fairness objectives. On the other hand, existing
types of fair stable matchings did not provide as close an approximation to regret-equal
stable matchings.

• Chapter 4: Profile-based stable matchings in SMI. Continuing the theme of fairness,
Chapter 4 focusses on profile-based optimality in SMI. We study rank-maximal and

5

generous stable matchings. A stable matching is rank-maximal if the maximum num-
ber of men and women are assigned to their first-choice partner, and subject to this,
their second-choice partner, and so on, among the set of all stable matchings. A sta-
ble matching is generous if the minimum number of men and women are assigned
to the worst ranked choice, and subject to that, the second-to-worst ranked choice,
and so on. Let n be the number of men or women, and m be the total length of all
preference lists. In this chapter we develop an adaptation to an existing O(nm2 log n)

algorithm for finding a rank-maximal and generous stable matching, to work with a
far reduced memory allocation requirement (an estimated 100-fold improvement for
instances with 100, 000 men or women). The definitions of rank-maximal and gener-
ous stable matchings in SR are analogous to the SMI case. We show that the problem
of finding stable matchings of these types in SR is NP-hard. Additionally we present
an empirical evaluation to compare various fairness measures over profile-based and
other types of fair stable matchings.

• Chapter 5: Large stable matchings in SPA-ST. The largest body of work is given
in Chapter 5 where SPA-ST is investigated. Recall that Király [40] described a 3

2
-

approximation algorithm for MAX-HRT. Chapter 5 extends this work with the creation
of a 3

2
-approximation algorithm for MAX-SPA-ST. The introduction of a third type of

agent (lecturers) adds significant complications compared to the HRT case, resulting in
extensive correctness proofs for this algorithm.

• Chapter 6: Experiments and further results for SPA-ST. Finally, Chapter 6 comprises
two separate contributions in the area of SPA-ST. Firstly, in Section 6.2 an IP model
to find a stable matching in SPA-ST is presented. Using this IP model, the approxi-
mation algorithm developed in Chapter 5 is evaluated, investigating how close to the
maximum stable matching size is achieved in practice by the approximation algorithm,
using randomly-generated instances. We find that the approximation algorithm easily
surpasses its 3

2
bound, constructing a stable matching within 92% of optimal in all

cases tested. Secondly, in Section 6.3, we study SPA-STL. We seek a matching that
in some way balances student loads across lecturers according to their targets. We
define the load-max-balanced score of a matching as the maximum absolute differ-
ence between a lecturer’s target and their number of allocations. We also define the
load-sum-balanced score as the sum of absolute differences between each lecturer tar-
get and their number of allocations. A load-balanced matching in SPA-STL is then
a matching that minimises the load-max-balanced score and load-sum-balanced score
over all matchings. We show that a load-balanced matching must exist and give an
efficient algorithm to return such a matching. Additionally, we study the problem of
finding a load-balanced stable matching, that is, a stable matching that simultaneously

6

minimises both the load-max-balanced score and load-sum-balanced score. We show
that the problem of finding a load-balanced stable matching is NP-hard, and present
new IP models to find such matchings.

Experimental results are presented in Chapters 3, 4 and 6. All experiments were conducted
on the same machine with 32 cores, 8×64GB RAM and Dual Intel R© Xeon R© CPU E5-2697A
v4 processors, unless otherwise stated.

7

Chapter 2

Literature review

2.1 The House Allocation problem (HA)

We begin this literature review by surveying bipartite matching problems with one-sided
preferences. These problems arise in the case of the assignment of a set of applicants to a
set of houses, such that each applicant and house may be assigned only once. Each applicant
ranks a subset of houses (the applicant’s acceptable houses) in order of preference, but the
houses do not express any preference over applicants. This case, where there are two disjoint
sets of entities, the members of one of which have preference over members of the other,
is known as the House Allocation problem (HA) [27, 76, 1]. A matching in an HA instance
may be defined as an assignment of applicants to houses such that each applicant and house
is assigned at most once, and each applicant finds the house to which they are assigned
acceptable. The definition of the degree of a matching in HA is analogous to that in the SMI

case.

As with HR described in Chapter 1, each HA instance may admit many different matchings
and the decision as to which matching is best will depend on the priorities of the matching
scheme administrator. In contrast to SMI, HR and SPA-S, the concept of stability does not
exist, since houses have no preference over applicants. However we are able to use sev-
eral similar definitions that were given for SMI, to describe optimality criteria in HA. The
definitions of rank-maximal and generous criteria for HA are analogous to the SMI setting.
In a rank-maximal matching, the maximum number of applicants are assigned to their first-
choice house, and subject to this, their second-choice house, and so on. In a greedy maximum

matching, the maximum number of applicants are assigned, and, subject to this, we optimise
on first, second, third choices etc, as in the case of a rank-maximal matching. Finally, in a
generous maximum matching, the maximum number of applicants are assigned as possible
and, subject to this, the generous criterion is applied. The rank and cost of an applicant can
be defined in a similar way to SMI. Then, a minimum cost maximum cardinality matching is

2.1. The House Allocation problem (HA) 8

a matching that first maximises the size of the matching and subject to this, minimises cost
over all applicants.

Extensions to HA include the House Allocation problem with Ties (HAT), in which applicants
may be indifferent between two or more houses on their preference list; the Capacitated

House Allocation problem (CHA), where houses may admit more than one applicant up to
some fixed upper limit; and the Capacitated House Allocation problem with Ties (CHAT) in
which both extensions apply. The concepts of degree and profile extends naturally to these
capacitated cases. There are polynomial-time algorithms for finding several profile-based
optimal matchings in CHAT instances as follows. Let I be an instance of CHAT. Huang et al.
[26] described an algorithm to find a rank-maximal matching M in I that runs in Õ(dnm)

time1, where n is the number of applicants and houses, m is the total length of all preference
lists and d is the degree of M . This algorithm may be adapted to find a greedy maximum
matching and a generous maximum matching in I , and runs in the same time complexity.
Finally, Gabow and Tarjan [18] described an algorithm to find a minimum cost maximum
cardinality matching in I that runs in O(

√
nm log n) time.

Popularity, another type of optimality criterion, may also be defined in the HA context. A
matching is said to be popular if there is no other matching preferred by the majority of
applicants who have a strict preference between them. Popular matchings may be of different
sizes and an algorithm to find a maximum-sized popular matching (hereafter a maximum

popular matching) in an instance of HA, or report that none exists, is described by Abraham
et al. [5]. This algorithm runs in O(n + m) time where n is the sum of the number of
applicants and houses, and m is the total length of all preference lists. Abraham et al. [5]
describes a further O(

√
n1m) algorithm to find a maximum popular matching in an instance

of HAT, where n1 is the number of applicants. For instances of CHA and CHAT, Manlove
and Sng [49] developed algorithms to find a maximum popular matching or report that none
exists in O(

√
Cn1 + m) and O(

√
C + n1m) respectively, where C is the sum of capacities

of all houses. Finally, counting the number of popular matchings in HA can be done in linear
time [55].

Pareto optimality is a further optimality criterion that may be applied to HA. Given an in-
stance of HA or one of its extensions, a matching is Pareto optimal if there is no other
matching in which an applicant is made better off, without making another applicant worse
off. The Serial Dictatorship Mechanism (SDM), a description of which may be found in
Roth and Sotomayor’s book [69], finds a Pareto optimal matching in an instance of HA in
O(m) time, where m is the total length of all preference lists. An applicant ordering is re-
quired as input to this algorithm, with applicants nearer the top of the list having advantage.
The Random Serial Dictatorship Mechanism is identical to Algorithm SDM except that a

1Õ notation (also known as ‘Soft-O’) is used to represent the ‘big-O’ growth-rate of a function such that
logarithmic factors are ignored. Thus if f(n) = Õ(g(n)) then f(n) = O(g(n) logk g(n)) for some constant k.

2.2. The Stable Marriage problem (SM) 9

random applicant ordering is used as input. Finally, Pareto optimal matchings may be of
different sizes and a maximum-sized such matching can be found in O(

√
n1m) where n1 is

the number of applicants [4].

2.2 The Stable Marriage problem (SM)

2.2.1 Introduction

We now move on to considering bipartite matching problems with two-sided preferences.
The Stable Marriage problem (SM), the archetypal problem in this category, was first intro-
duced in Gale and Shapley’s seminal paper “College Admission and the Stability of Mar-
riage” [19]. In an instance of SM we have two sets of agents, men and women (of equal
number, henceforth n), such that each man ranks every woman in strict preference order, and
vice versa. An extension to SM, known as the Stable Marriage problem with Incomplete lists
(SMI), described in Chapter 1, allows each man (woman) to rank a subset of women (men).
A stable matching in SM may be defined in an identical way to the SMI case. Chapters 3 and
4 deal with fairness over stable matchings in SMI, and we therefore present further results
with respect to this SMI scenario.

2.2.2 The Stable Marriage problem with Incomplete lists (SMI)

2.2.2.1 Formal definitions

In this section we give a more formal definition of SMI. An instance I of the Stable Marriage
problem with Incomplete lists (SMI) comprises two sets of n agents, men U = {m1,m2, ...,

mn} and women W = {w1, w2, ..., wn}. Each man (woman) ranks a subset of women (men)
in strict preference order, where m denotes the total length of all preference lists. A man mi

finds a woman wj acceptable if wj appears on mi’s preference list. Similarly, a woman wj
finds a man mi acceptable if mi appears on wj’s preference list. Without loss of generality,
we assume that acceptability is symmetric, i.e., given any man mi and any women wj , mi

finds wj acceptable if and only if wj finds mi acceptable. A pair (mi, wj) is acceptable if
mi finds wj acceptable and wj finds mi acceptable. A matching M in this context is an
assignment of men to women comprising acceptable pairs such that no man or woman is
assigned to more than one person. An example SMI instance I0 with 8 men and women is
taken from Gusfield and Irving’s book [25, p. 69] and is given as Figure 2.1. This example
has complete preference lists, where each man ranks every woman, and vice versa, and is
therefore also an instance of SM. If mi is assigned in M , we let M(mi) denote mi’s assigned
partner. Similarly, if wj is assigned in M , we let M(wj) denote wj’s assigned partner.

2.2. The Stable Marriage problem (SM) 10

Men’s preferences:
m1: w5 w7 w1 w2 w6 w8 w4 w3

m2: w2 w3 w7 w5 w4 w1 w8 w6

m3: w8 w5 w1 w4 w6 w2 w3 w7

m4: w3 w2 w7 w4 w1 w6 w8 w5

m5: w7 w2 w5 w1 w3 w6 w8 w4

m6: w1 w6 w7 w5 w8 w4 w2 w3

m7: w2 w5 w7 w6 w3 w4 w8 w1

m8: w3 w8 w4 w5 w7 w2 w6 w1

Women’s preferences:
w1: m5 m3 m7 m6 m1 m2 m8 m4

w2: m8 m6 m3 m5 m7 m2 m1 m4

w3: m1 m5 m6 m2 m4 m8 m7 m3

w4: m8 m7 m3 m2 m4 m1 m5 m6

w5: m6 m4 m7 m3 m8 m1 m2 m5

w6: m2 m8 m5 m3 m4 m6 m7 m1

w7: m7 m5 m2 m1 m8 m6 m4 m3

w8: m7 m4 m1 m5 m2 m3 m6 m8

Figure 2.1: SMI instance I0 [25, p. 69].

Matching M is stable if it has no blocking pair (mi, wj) which is defined as follows:

1. (mi, wj) is an acceptable pair, and;

2. mi is unassigned or prefers wj to M(mi), and;

3. wj is unassigned or prefers mi to M(wj).

A stable matching must exist in every instance of SMI [19]. Gale and Shapley [19] de-
scribed two O(m) time algorithms to find a stable matching in an instance of SMI. The
Man-oriented Gale-Shapley Algorithm produces a man-optimal stable matching, that is, a
stable matching in which each man is assigned to his most-preferred woman in any stable
matching. Unfortunately, the man-optimal stable matching is also woman-pessimal where
each woman is assigned to her least-preferred man in any stable matching [58]. Similarly
the Woman-oriented Gale-Shapley Algorithm produces the woman-optimal (man-pessimal)
stable matching.

As in the HR case, there may be many stable matchings in a particular instance of SMI. We
denote byMS the set of all stable matchings in I , which may be exponential in size [30].
By the Rural Hospitals theorem [20], the same set of men and women are assigned in all
stable matchings ofMS . Thus, for the remainder of this thesis, we assume any instance I of
SMI has been pre-processed using the Man-oriented Gale-Shapley Algorithm to discard all
agents unassigned in any stable matching.

Recall that the man-optimal stable matching is also the woman-pessimal stable matching,
and vice versa. Clearly, it may not be ideal to have one group so heavily favoured over the
other, and so it is natural to wish to find a stable matching inMS that is in some sense fair
for both sets of men and women. Before examining fairness in the next section, we provide
several relevant definitions.

Let M be a stable matching in SMI. We denote by rank(mi, wj) the position of wj in mi’s
preference list, and define rank(wj,mi) similarly. The rank of mi with respect to matching

2.2. The Stable Marriage problem (SM) 11

M is defined rank(mi,M(mi)). An analogous definition holds for women. We define the
man-degree dU(M) of matching M as the largest rank of all men in M , that is, dU(M) =

max{rank(mi,M(mi)) : mi ∈ U}. Similarly, the woman-degree dW (M) of matching M
is given by dW (M) = max{rank(wj,M(wj)) : wj ∈ W}. The degree of M , denoted
d(M), is given by d(M) = max{dU(M), dW (M)}. Define the degree pair of M , denoted
d′(M) = (a, b) as the tuple of man and woman degrees in M , where a = dU(M) and
b = dW (M). The man-cost cU(M) of matching M is defined as the sum of ranks of all men,
that is, cU(M) =

∑
mi∈U rank(mi,M(mi)). Similarly, the woman-cost of matching M is

given by cW (M) =
∑

wj∈W rank(wj,M(wj)). Finally, the cost of matching M is denoted
c(M) where c(M) = cU(M) + cW (M).

2.2.2.2 Fairness

There are several optimality criteria we may wish to use when defining the notion of a fair
stable matching in an instance of SMI. We present a review of these criteria here. Let I be
an instance of SMI.

Firstly, we examine cost-based optimality criteria.

Given a stable matching M , define its balanced score to be max{cU(M), cW (M)}. M is
balanced [14] if it has minimum balanced score over all stable matchings in MS . Feder
[14] showed that the problem of finding a balanced stable matching in SMI is NP-hard,
although can be approximated within a factor of 2. This approximation factor was improved
by McDermid to 2 − 1

l
, where l is the length of the longest preference list, as noted in

Manlove [47, p. 110]. Gupta et al. [22] showed that a balanced stable matching can be
found in O(f(n)8t) time when parameterised by t = k − min{cU(M0), cW (Mz)}, where
f(n) is a function polynomial in n and k is the balanced score of a balanced stable matching.
The sex-equal score of M is defined to be |cU(M) − cW (M)|. M is sex-equal [25] if it
has minimum sex-equal score over all stable matchings inMS . Finding a sex-equal stable
matching was shown to be NP-hard by Kato [38]. This result was later strengthened by
McDermid and Irving [56] who showed that, even in the case when preference lists have
length at most 3, the problem of deciding whether there is a stable matching with sex-equal
score 0 is NP-complete. Since sex-equal scores may equal 0, it does not make sense to seek
an algorithm that approximates the sex-equal score to within a certain factor. Iwama et al.
[35] define a near sex-equal stable matching (if it exists) as a stable matching M such that
|cU(M) − cW (M)| ≤ ε∆ where ∆ = min{|cU(M0) − cW (M0)|, |cU(Mz) − cW (Mz)|} and
ε is a positive constant [35]. Additionally, they describe an O(n3+ 1

ε) algorithm to find a near
sex-equal stable matching or report that none exists. A polynomial-time algorithm to find a
sex-equal stable matching was described for instances in which men have preference lists of
length at most 2 (women’s preference lists remaining unbounded) [56].

2.2. The Stable Marriage problem (SM) 12

A stable matching M is egalitarian [41] if c(M) is minimum over all stable matchings in
MS . A weight-based generalisation of an instance I of SMI occurs when we allow each
man mi to assign a unique positive integer weight to each woman wj on his preference list,
denoted w(mi, wj). A similar definition exists for the weight of a man on a woman’s pref-
erence list. Rankings on men’s and women’s preference lists may then be inferred from
these weights. Let w(M) denote the weight function of stable matching M , such that
w(M) =

∑
(mi,wj)∈M (w(mi, wj) + w(wj,mi)). A matching M is minimum (maximum)

weight if w(M) is minimum (maximum) taken over all stable matchings in I . Thus the min-
imum weight function w(M) is a generalisation of the egalitarian cost function that min-
imises c(M) over all stable matchings. Irving et al. [32] showed that an egalitarian stable
matching can be found inO(m2) time and a minimum weight stable matching inO(m2 log n)

time. Additionally, Irving et al. [32] described a simple transformation that allows the mini-
mum weight stable matching algorithm to be used to find a maximum weight stable matching
in the same time complexity. Let K be the weight of a minimum weight stable matching.
Feder [15] improved on the methods above, giving anO(m1.5) algorithm, based on weighted
SAT, for finding a minimum weight stable matching when K ≤ m (which includes the case
where we wish to find an egalitarian stable matching), and an O(nm logm) algorithm to
find a minimum weight stable matching in the general case when m < K and K = O(mc),
where c is a constant value.

Secondly, we examine degree-based optimality criteria. A stable matching M is minimum

regret [41] if the maximum of dU(M) and dW (M) is minimum among all stable matchings
inMS . It is possible to find a minimum regret stable matching in O(m) time [23].

Next, we examine profile-based optimality criteria. We define the profile of a stable matching
as follows. Given a stable matching M , let the profile of M be given by the vector p(M) =

〈p1, p2, ..., pn〉 where pk = |{(mi, wj) ∈ M : rank(mi, wj) = k}| + |{(mi, wj) ∈ M :

rank(wj,mi) = k}| for each k (1 ≤ k ≤ n). Thus we define a stable matching M in I to
be rank-maximal if p(M) is lexicographically maximum, taken over all stable matchings in
MS . We define the reverse profile pr(M) to be the vector pr(M) = 〈pk, pk−1, ..., p1〉, where
k is the degree of a minimum regret stable matching. A stable matching M in I is generous

if pr(M) is lexicographically minimum, taken over all stable matchings inMS . Irving et al.
[32] showed that a rank-maximal stable matching and a generous stable matching can be
found in O(nm2 log n) time. Feder [15] improved on this, giving an O(n0.5m1.5) algorithm
for finding a rank-maximal stable matching.

We now describe a median stable matching, which is an additional type of fair stable match-
ing whose definition is not based on degree, cost or profile. A median stable matching may
be described in the following way. Let li denote the multiset of all women who are assigned
to man mi in the stable matchings in MS (in general li is a multiset as mi may have the
same partner in more than one stable matching). Assume that li is sorted according to mi’s

2.2. The Stable Marriage problem (SM) 13

ρ0: (m1, w5) (m3, w8)
ρ1: (m1, w8) (m2, w3) (m4, w6)
ρ2: (m3, w5) (m6, w1)
ρ3: (m7, w2) (m5, w7)
ρ4: (m3, w1) (m5, w2)

Figure 2.2: Rotations for instance I0.

preference order (there may be repeated values) and let li,j represent the jth element of this
list. For each j (1 ≤ j ≤ |MS|), let Mj denote the set of pairs obtained by assigning mi to
li,j . Teo and Sethuraman [73] showed the surprising result that Mj is a stable matching for
every j such that 1 ≤ j ≤ |MS|. If |MS| is odd then the unique median stable matching is
found when j =

⌈
|MS |
2

⌉
. However, if |MS| is even, then the set of median stable matchings

are the stable matchings such that each man (woman) does no better (worse) than his (her)
partner when j = |MS |

2
and no worse (better) than his (her) partner when j = |MS |

2
+ 1. For

the purposes of this thesis, in particular Chapter 4, we define the median stable matching as
the stable matching found when j =

⌈
|MS |
2

⌉
. Computing the set of median stable matchings

is #P-hard [9].

2.2.2.3 Structure of stable matchings

In this section, we describe a structural characterisation of the stable matchings in SMI, which
may be exploited to enumerate all stable matchings of a given instance.

For some stable matching M in an instance I of SMI, let s(mi,M) denote the next woman
wj on mi’s preference list (starting from M(mi)) who prefers mi to M(wj). A rotation ρ

is then a sequence of man-woman pairs {(m1, w1), (m2, w2), ..., (mq, wq)} in M , such that
mi+1 = M(s(mi,M)) for 1 ≤ i ≤ q, where addition is taken modulo q [32]. We say
rotation ρ is exposed on M if {(m1, w1), (m2, w2), ..., (mq, wq)} ⊆ M . If ρ is exposed on
M , we may eliminate ρ on M , that is, remove all pairs of ρ from M and add pairs (mi, wi+1)

for 1 ≤ i ≤ q, where addition is taken modulo q, in order to produce another stable matching
M ′ of I . Recall Figure 2.1 shows example instance I0. A list of rotations of I0 is given in
Figure 2.2.

An example of a rotation being eliminated on a stable matching now follows. The man-
optimal stable matching for instance I0 is given by M0 = {(m1, w5), (m2, w3), (m3, w8),

(m4, w6), (m5, w7), (m6, w1), (m7, w2), (m8, w4)}. The only rotation exposed on M0 from
Figure 2.2, according to the above definition, is ρ0 = {(m1, w5), (m3, w8)}. Permuting
the pairs of ρ0 involves moving m1 to have partner w8 and moving m3 to have partner w5.
Hence, eliminating ρ0 on M0 results in the stable matching M ′

0 = {(m1, w8), (m2, w3),

(m3, w5), (m4, w6), (m5, w7), (m6, w1), (m7, w2), (m8, w4)}.

2.2. The Stable Marriage problem (SM) 14

ρ0

ρ1

ρ2

ρ3

ρ4

(a) Rotation poset Rp(I0).

ρ0

ρ1

ρ2

ρ3

ρ4

21

1

1

2

1, 2

(b) Rotation digraph Rd(I0).

Figure 2.3: Rotation poset and digraph of I0.

The rotation poset Rp(I) of I indicates the order in which rotations may be eliminated.
Rotation ρ is said to precede rotation τ if τ is not exposed until ρ has been eliminated.
There is a one-to-one correspondence between the set of stable matchings and the set of
closed subsets of Rp(I) [32, Theorem 3.1]. Gusfield and Irving [25] describe an additional
structure known as the rotation digraph Rd(I) of I which is based on Rp(I) and allows
for the enumeration of all stable matchings in O(m + n|MS|) time. A description of the
creation of a rotation digraph now follows. First, retain each rotation from the rotation poset
as a vertex. There are two types of predecessor relationships to consider.

1. Suppose pair (mi, wj) ∈ ρ. We have a directed edge in our digraph from ρ′ to ρ if
ρ′ is the unique rotation that moves mi to wj . In this case we say that ρ′ is a type 1

predecessor of ρ.

2. Let ρ be the rotation that moves mi below wj and ρ′ 6= ρ be the rotation that moves wj
above mi. Then we add a directed edge from ρ′ to ρ and say ρ′ is a type 2 predecessor

of ρ.

The rotation poset and rotation digraph for instance I0, denoted Rp(I0) and Rd(I0) respec-
tively, are shown in Figure 2.3.

Using the rotation digraph structure, Gusfield and Irving [25] showed how to enumerate all
stable matchings in O(m + n|MS|) time, whereMS is the set of all stable matchings. All
stable matchings of instance I0 are listed in Figure 2.4.

2.2.3 The Stable Marriage problem with Ties and Incomplete lists
(SMTI)

The Stable Marriage problem with Ties and Incomplete lists (SMTI) is an extension to SMI

in which men (women) may have ties in his (her) preference lists, indicating an indifference

2.2. The Stable Marriage problem (SM) 15

M0 = {(m1, w5), (m2, w3), (m3, w8), (m4, w6), (m5, w7), (m6, w1), (m7, w2), (m8, w4)}
M1 = {(m1, w8), (m2, w3), (m3, w5), (m4, w6), (m5, w7), (m6, w1), (m7, w2), (m8, w4)}
M2 = {(m1, w3), (m2, w6), (m3, w5), (m4, w8), (m5, w7), (m6, w1), (m7, w2), (m8, w4)}
M3 = {(m1, w8), (m2, w3), (m3, w1), (m4, w6), (m5, w7), (m6, w5), (m7, w2), (m8, w4)}
M4 = {(m1, w3), (m2, w6), (m3, w1), (m4, w8), (m5, w7), (m6, w5), (m7, w2), (m8, w4)}
M5 = {(m1, w8), (m2, w3), (m3, w1), (m4, w6), (m5, w2), (m6, w5), (m7, w7), (m8, w4)}
M6 = {(m1, w3), (m2, w6), (m3, w1), (m4, w8), (m5, w2), (m6, w5), (m7, w7), (m8, w4)}
M7 = {(m1, w3), (m2, w6), (m3, w2), (m4, w8), (m5, w1), (m6, w5), (m7, w7), (m8, w4)}

Figure 2.4: Stable matchings for instance I0.

Men’s preferences:
m1: w1

m2: (w1 w2)
m3: w2 w3

m4: (w4 w5)
m5: (w4 w6)
m6: (w5 w6)

Women’s preferences:
w1: m2 m1

w2: (m2 m3)
w3: m3

w4: (m4 m5)
w5: (m4 m6)
w6: (m5 m6)

Figure 2.5: SMTI instance I1 [47, p. 152].

between two or more women (men). The definitions of an acceptable man-woman pair, a
matchingM and the notationM(mi) andM(wj) for manmi and womanwj , follow from the
SMI case. An example instance I1 of SMTI is shown in Figure 2.5, where brackets indicate
ties in preference lists. The introduction of ties has the effect of changing what it means for
a matching to be stable. We present the following stability definitions for SMTI.

• Weakly stable: A matching M in SMTI is weakly stable if it has no blocking pair

(mi, wj) such that the following conditions hold:

1. (mi, wj) is acceptable, and;

2. mi is unassigned or prefers wj to M(mi), and;

3. wj is unassigned or prefers mi to M(wj).

• Strongly stable: A matching M in SMTI is strongly stable if it has no blocking pair

(mi, wj) such that either of the following holds:

– 1. (mi, wj) is acceptable, and;

2. mi is unassigned or prefers wj to M(mi), and;

3. wj is unassigned or prefers mi to M(wj) or is indifferent between them.

or

– 1. (mi, wj) is acceptable, and;

2. mi is unassigned or preferswj toM(mi) or is indifferent between them, and;

2.2. The Stable Marriage problem (SM) 16

3. wj is unassigned or prefers mi to M(wj).

• Super stable: A matchingM in SMTI is super-stable if it has no blocking pair (mi, wj)

such that the following conditions hold:

1. (mi, wj) is acceptable, and;

2. mi is unassigned or prefers wj to M(mi) or is indifferent between them, and;

3. wj is unassigned or prefers mi to M(wj) or is indifferent between them.

The definition of weak-stability in SMTI is identical to stability in the SMI case. It is clear
from the stability definitions above that all strongly stable and super-stable matchings are
also weakly stable. Instance I1 has four weakly stable matchings as shown in Figure 2.6.
Here, M1 and M2 are also strongly stable matchings. This must be true since 1) each man
and woman in both M1 and M2 are assigned their first-choice partners, 2) unassigned man
m1 would rather be assigned to w1, however w1 prefers her assigned partner m2, and 3)
unassigned woman w3 would rather be assigned to m3, however m3 prefers his assigned
partner w2. Finally since all matchings contain either the pair (m5, w6) or (m6, w6), both of
which are blocking pairs under super-stability, there is no super-stable matching in instance
I1.

As shown above, a super-stable matching need not exist. The same result also holds for
strong stability as shown by instance I2 in Figure 2.7, where the matching {(m1, w1), (m2, w2)}
is blocked by pair (m2, w1) and the matching {(m1, w2), (m2, w1)} is blocked by pair (m2, w1)

under the strong stability definition. In an instance I of SMTI, a matching is super-stable if
and only if it is weakly stable in every instance that is derived by breaking ties of I [33].
Thus we may deduce that if a weakly stable matching M in an instance of SMTI exists, such
that the associated preference list elements of pairs in M are not involved in ties, then this
is a super-stable matching. An example therefore, of a super-stable matching, is given by
{(m1, w1), (m2, w2), (m3, w3)} in an instance of size n = 3, where m1, m2 and m3 rank
respectively w1, w2 and w3 as their first choice (with no ties), and vice versa, regardless of
the choice of other preference list elements (which may include ties for second choices).

It is possible to find a weakly stable matching in SMTI in linear time, by breaking ties of
the instance randomly to form an SMI instance [51], and then using either the Man-optimal

M0 = {(m2, w1), (m3, w2), (m4, w4), (m6, w6)}
M1 = {(m2, w1), (m3, w2), (m4, w4), (m5, w6), (m6, w5)}
M2 = {(m2, w1), (m3, w2), (m4, w5), (m5, w4), (m6, w6)}
M3 = {(m1, w1), (m2, w2), (m3, w3), (m4, w4), (m5, w6), (m6, w5)}

Figure 2.6: Stable matchings for instance I1.

2.3. The Stable Roommates problem (SR) 17

Men’s preferences:
m1: w1 w2

m2: w1 w2

Women’s preferences:
w1: (m1 m2)
w2: m1 m2

Figure 2.7: SMTI instance I2 [47, p. 150].

or Woman-optimal Gale-Shapley algorithm to find a stable matching. Kavitha et al. [39]
developed an algorithm for the problem of finding a strongly stable matching or reporting
than none exists, given an instance I of SMTI, that runs in O(nm) time. Manlove [46]
describes an algorithm that find a super-stable matching or reporting than none exists, in an
instance I of SMTI, that runs in O(m) time.

From this point on, weak stability in SMTI may also be referred to as stability. Given an
instance of SMTI, stable matchings may be of different sizes. The problem of finding a
maximum stable matching in SMTI is denoted MAX-SMTI, and was shown to be NP-hard
[51]. This NP-hardness result remains even in the case that each man’s preference list is
strictly ordered and of length 3, and, each woman’s preference list is either strictly ordered
and of length 3, or is a tie of length 2 [57]. Yanagisawa [74] showed that it is not possible
to approximate the problem of finding a maximum stable matching within a factor of 33

29

unless P = NP. McDermid [53] developed a 3
2
-approximation algorithm for this problem,

and a simpler approximation algorithm was later developed by Király [40] with the same
approximation factor.

2.3 The Stable Roommates problem (SR)

A further type of matching problem exists when we have a single set of entities, who match
to other members of the same set. This is a non-bipartite generalisation of SM, known as
the Stable Roommates problem (SR). An instance of SR consists of a single set of n agents
(roommates), A = {a1, a2, ..., an}, each of whom ranks other members of the set in strict
order of preference. A matching in this context is an assignment of pairs of agents such that
each agent is assigned exactly once. The Stable Roommates problem with Incomplete lists

(SRI) is an extension of SR in which each agent ranks a subset of the others. Let m be the
total length of all preference lists. An agent ai finds another agent aj acceptable if aj appears
on ai’s preference list. As in the SMI case, we assume that acceptability is symmetric, i.e.,
given any pair of agents ai and aj , ai finds aj acceptable if and only if aj finds ai acceptable.
A pair {ai, aj} of agents is defined as acceptable if ai finds aj acceptable and aj finds ai
acceptable. Figure 2.8 shows an example SRI instance I3. A matching M in SRI is then an
assignment of acceptable pairs of agents such that each agent is assigned at most once. If ai
is assigned in a matching M , we let M(ai) denote ai’s assigned partner.

2.3. The Stable Roommates problem (SR) 18

Agents’s preferences:
a1: a3 a2 a5 a4
a2: a1 a5 a4
a3: a1 a5
a4: a5 a1 a2
a5: a1 a2 a4 a3

Figure 2.8: SRI instance I3.

The notion of stability also exists in this setting. Given an instance I of SRI, a pair {ai, aj}
is a blocking pair if:

1. {ai, aj} is an acceptable pair, and;

2. ai is unassigned or prefers aj to M(ai), and;

3. aj is unassigned or prefers ai to M(aj)

A matching is considered stable if it admits no blocking pair. Using a counterexample, Gale
and Shapley [19] showed that a stable matching in SR (and therefore SRI) need not exist in all
instances. Irving [29] gave an O(n2) algorithm to find a stable matching in SR or report that
no such matching exists. This algorithm may be easily extended to the SRI case, and runs in
O(m) time [25]. We define a solvable instance as an instance that admits at least one stable
matching. Let I be an instance of SRI. Then, if I is solvable, the set of stable matchings of I
must all involve the same set of agents [25]. As in the SMI case, when we henceforth study
an SRI instance I , we assume that Irving’s algorithm to find a stable matching has been used
to pre-process I , discarding all agents unassigned in any stable matching.

As with SMI, a structural characterisation of stable matchings exists in solvable instances of
SRI, which involves the rotation poset. This structure (described in more detail in Gusfield
and Irving’s book [25]) can be exploited to give the following algorithmic results. A stable

pair is a pair of agents that belong to some stable matching. Gusfield [24] described an
algorithm to find the set of all stable pairs in O(nm log n) time. This was later improved
by Feder [15] to run in O(nm) time. Secondly, the set of stable matchings can be listed in
O(m) time per matching, after a pre-processing time of O(nm log n) [24, 25]. Again, this
was later improved by Feder [16] to run in O(n) time per matching, after a pre-processing
time of O(m).

Let M be a stable matching in SRI. For any two agents ai and aj , we denote by rank(ai, aj)

the position of aj in ai’s preference list and define the rank of ai with respect to matching
M as rank(ai,M(ai)). The degree of M is the largest rank of all agents in M . A stable
matching M is minimum regret if the degree of M is minimum over all stable matchings.

2.4. The Hospitals/Residents problem (HR) 19

Gusfield and Irving [25] describe an algorithm to find a minimum regret stable matching, in
a solvable instance I of SRI, in O(m) time. As in the SMI case, the profile of M is given by
the vector p(M) = 〈p1, p2, ..., pn〉 where pk = |{ai ∈ A : rank(ai,M(ai)) = k}| for each
k (1 ≤ k ≤ n). A stable matching M is then rank-maximal if p(M) is lexicographically
maximum, taken over all stable matchings. Finally, a stable matching M is generous if
the reverse profile pr(M) = 〈pn, pn−1, ..., p1〉 is lexicographically minimum, taken over all
stable matchings.

The Stable Roommates problem with Ties and Incomplete lists (SRTI) is an extension of SRI

in which an agent may be indifferent between two or more other agents on their preference
list. The definition of a matching carries over from the SRI case. As in SMTI, the definition of
a stable matching in SRTI can be expanded. A weakly stable, strongly stable and super-stable

matching in SRTI may be defined in an analogous way to SRTI. For a solvable instance I of
SRTI, and any matching M of I , M is weakly stable in I if and only if it is also stable in
some instance of SRI created from breaking ties in I [31]. However, determining whether an
instance of SRTI admits a weakly stable matching is NP-complete [66]. Finally, Kunysz [42]
described an O(nm) algorithm to find a strongly stable matching or report than none exists,
and Irving and Manlove [31] described an O(m) algorithm to find a super-stable matching
or report than none exists.

2.4 The Hospitals/Residents problem (HR)

2.4.1 Introduction

An extension to SMI is known as Hospitals/Residents problem (HR) and was introduced in
Chapter 1. Formally, an instance of HR has two sets of agents, namely residents and hospitals.
Residents rank a subset of hospitals (their acceptable hospitals) in strict preference order, and
vice versa. As in SMI, without loss of generality we assume that acceptability is symmetric,
i.e., given a resident ri and a hospital hj , ri finds hj acceptable if and only if hj finds ri
acceptable. A resident-hospital pair (ri, hj) is acceptable if ri is acceptable to hj and hj
is acceptable to ri. Denote by cj the capacity of hospital hj . A matching in this scenario
is defined as an allocation of residents to hospitals such that each resident-hospital pair in
M is acceptable, each resident may be assigned at most one hospital, and each hospital hj
may be assigned at most cj residents. If ri is assigned in matching M , we let M(ri) denote
ri’s assigned hospital, otherwise if ri is unassigned, we define M(ri) = ⊥ (undefined).
Denote by M(hj) the set of residents assigned to hj in M . We describe a hospital hj as
undersubscribed if |M(hj)| < cj , and full if |M(hj)| = cj .

A pair (ri, hj) of M is blocking if the following conditions hold:

2.4. The Hospitals/Residents problem (HR) 20

1. (ri, hj) is acceptable, and;

2. ri is unassigned or prefers hj to M(ri), and;

3. Either hj is undersubscribed, or is full and prefers ri to its worst ranked resident in
M(hj).

A matching M is stable if it admits no blocking pair.

As with the SMI case, Gale and Shapley [19] showed that a stable matching always exists in
an instance of HR and can be found in linear time using the Resident-oriented Gale-Shapley
Algorithm or the Hospital-oriented Gale-Shapley Algorithm [19]. There may be many stable
matchings in a particular instance of HR.

The “Rural Hospitals” Theorem [68, 67, 20] identifies several properties that hold for all
instances of HR, and is given as Theorem 2.4.1.

Theorem 2.4.1 ([68, 67, 20]). Let I be and instance of HR. Then, the following properties

hold in I:

• The same set of residents are assigned in all stable matchings;

• Each hospital is assigned the same number of residents in all stable matchings;

• Any hospital that is undersubscribed in one stable matching is assigned exactly the

same set of residents in all stable matchings.

2.4.2 Variants of HR

An extension to HR, known as the Hospitals/Residents problem with Ties (HRT) [46], allows
residents to be indifferent between two or more hospitals on their preference list, and vice
versa. HRT is an extension of SMTI, and there are counterpart definitions for weak stability,
strong stability and super-stability in HRT. From this point on, we shorten weak stability
to stability in HRT. A stable matching in HRT has an analogous definition to the HR case.
Since HRT is an extension of SMTI, it also has the characteristic that stable matchings may
be of different sizes. Recall that MAX-HRT is the NP-hard problem of finding a maximum
stable matching in HRT. A 3

2
-approximation algorithm was developed by Király [40] for this

problem. Yanagisawa [74] showed that there is no approximation algorithm for MAX-HRT

with approximation factor 33
29

unless P = NP.

The Hospitals/Residents problem with Couples (HRC) [67] extends HR to allow some resi-
dents to apply jointly to hospitals in couples (for example couples may wish to be assigned

2.5. The Student-Project Allocation problem (SPA) 21

to hospitals that are close to each other). This is achieved by allowing resident couples to
submit a joint preference list over pairs of hospitals. The definition of a stable matching in
HR may be extended to the HRC setting [47, Section 5.3]. In this context a stable matching
may not exist, however it is possible to find a matching that is almost-stable (a matching
with the minimum number of blocking pairs). Manlove et al. [52] showed that this was an
NP-hard problem.

2.5 The Student-Project Allocation problem (SPA)

2.5.1 Introduction

The Student-Project Allocation problem (SPA) is an extension to HR in which students take
the place of residents, projects take the place of hospitals and a third set of agents, lecturers,
are introduced. Each project is then offered by a single lecturer, and each lecturer has an
associated capacity that indicates the maximum number of students who may be allocated
to projects they offer. There are two sub-cases that we consider for this problem. In SPA-
S lecturers have preferences over students, and in SPA-P lecturers have preferences over
projects. A review of each of these cases is now given.

2.5.2 The Student-Project Allocation problem with lecturer pref-
erences over Students (SPA-S)

2.5.2.1 Formal definitions

An informal definition of the SPA-S problem was given in Chapter 1. We now give a more
formal definition.

An instance I of SPA-S comprises a set S = {s1, s2, ..., sn1} of students, a set P = {p1, p2, ...,
pn2} of projects, and a set L = {l1, l2, ..., ln3} of lecturers, where |S| = n1, |P | = n2 and
|L| = n3. Each project is offered by a single lecturer, and each lecturer lk offers a set of
projects Pk ⊆ P , where P1, . . . , Pk partitions P . Each project pj ∈ P has a capacity cj ,
indicating the maximum number of students that may be assigned to it. Similarly, each
lecturer lk ∈ L has a capacity dk, indicating the maximum number of students who may be
assigned to projects they offer. We assume without loss of generality that dk is no greater
than the sum of the capacities of the projects in Pk. Each student si ∈ S has a set Ai ⊆ P

of acceptable projects that they rank in strict order of preference. Each lecturer lk ∈ L ranks
the students si for which Ai ∩ Pk 6= ∅ (i.e., si finds acceptable at least one project offered

2.5. The Student-Project Allocation problem (SPA) 22

Student preferences:
s1: p2 p3 p1
s2: p2 p1
s3: p1 p2 p3
s4: p1

Project details:
p1: lecturer l1, c1 = 1
p2: lecturer l1, c2 = 2
p3: lecturer l2, c3 = 2

Lecturer preferences:
l1: s1 s2 s4 s3
l2: s1 s3

d1 = 2
d2 = 2

Figure 2.9: SPA-S instance I4.

by lk) in strict preference order. Let m denote the total length of all student preference lists.
Figure 2.9 shows an example SPA-S instance I4.

An assignment M in I is a subset of S × P such that, for each pair (si, pj) ∈ M , pj ∈ Ai,
that is, si finds pj acceptable. Let M(si) denote the set of projects assigned to a student
si ∈ S, let M(pj) denote the set of students assigned to a project pj ∈ P , and let M(lk)

denote the set of students assigned to projects in Pk for a given lecturer lk ∈ L. A matching

M is an assignment such that |M(si)| ≤ 1 for all si ∈ S, |M(pj)| ≤ cj for all pj ∈ P and
|M(lk)| ≤ dk for all lk ∈ L. If si ∈ S is assigned in a matching M , we let M(si) denote
si’s assigned project, otherwise if si is unassigned, we define M(si) = ⊥ (undefined). We
describe a project pj as undersubscribed or full if |M(pj)| < cj or |M(pj)| = cj , respectively.
Similarly, we describe a lecturer lk as undersubscribed or full if |M(lk)| < dk or |M(lk)| =
dk, respectively.

Given a matching M in I , let (si, pj) ∈ (S × P)\M be a student-project pair, where pj is
offered by lecturer lk. Then (si, pj) is a blocking pair of M [6] if 1, 2 and 3 hold as follows:

1. si finds pj acceptable;

2. si either prefers pj to M(si) or is unassigned in M ;

3. Either (a), (b), or (c) holds as follows:

(a) pj is undersubscribed and lk is undersubscribed;

(b) pj is undersubscribed, lk is full and either si ∈M(lk) or lk prefers si to the worst
student in M(lk);

(c) pj is full and lk prefers si to the worst student in M(pj).

A matching M in an instance I of SPA-S is stable if it admits no blocking pair.

Abraham et al. [6] developed two O(m) time algorithms to find a stable matching in an in-
stance of SPA-S. One algorithm finds the student-optimal stable matching, in which each
student is assigned their best project in any stable matching of the instance. The other algo-
rithm finds the lecturer-optimal stable matching in which a similar optimality property holds
for all the lecturers. It was thus proved that all SPA-S instances have a stable matching [6].

2.5. The Student-Project Allocation problem (SPA) 23

Abraham et al. [6] also described several properties that hold for a given SPA-S instance,
known as the “Unpopular Projects” Theorem. This is given as Theorem 2.5.1.

Theorem 2.5.1 ([6]). Let I be and instance of SPA-S. Then, the following properties hold in

I:

• Each lecturer has the same number of assigned students in all stable matchings;

• The same set of students are assigned in all stable matchings;

• Any project offered by an undersubscribed lecturer has the same number of students

in all stable matchings.

2.5.2.2 The Student-Project Allocation problem with lecturer preferences over
Students including Ties (SPA-ST)

The Student-Project Allocation problem with lecturer preferences over Students including
Ties (SPA-ST) is an extension of SPA-S, in which students (lecturers) may have ties in their
preference lists, indicating indifference between two or more projects (students). The rank of
project pj on student si’s list, denoted rank(si, pj), is defined as 1 plus the number of projects
that si strictly prefers to pj . An analogous definition exists for the rank of a student on a
lecturer’s list, denoted rank(lk, si). In figures involving SPA-ST instances, ties are indicated
using brackets, as in the SMTI case. Analogous definitions of a matching M and the notation
M(si), M(pj) and M(lk), for student si, project pj and lecturer lk, follow from the SPA-S

case.

When ties exist in preference lists it is possible to extend the definition of stability, as in the
SMTI and HRT cases to include weak stability, strong stability [61] and super-stability [60].
In this thesis we consider only weak stability in SPA-ST, which we refer to from this point on
as stability. Stability in SPA-ST has the same definition as in SPA-S and therefore we bring
forward the definition of a blocking pair from SPA-S to this setting. As in the SPA-S case,
a stable matching must exist in every instance of SPA-ST. Such a matching can be found in
O(m) time by breaking ties randomly in the SPA-ST instance (to form an SPA-S instance)
and then using the algorithm described in the previous section to find a student-optimal
or lecturer-optimal stable matching [6]. However, in contrast with the SPA-S case, stable
matchings may be of different sizes. LetMS denote the set of all stable matchings. Recall
that MAX-SPA-ST is the problem of finding a maximum stable matching in SPA-ST. We note
that SMTI is the special case of SPA-ST in which there are an equal number of projects and
lecturers, each lecturer offers a unique project and the capacity of each project and lecturer
is 1. Thus, since MAX-SMTI is NP-hard [51], it follows that the more general MAX-SPA-ST

2.5. The Student-Project Allocation problem (SPA) 24

problem is also NP-hard. The result of Yanagisawa [74], which showed that it is not possible
to approximate MAX-SMTI within a factor of 33

29
unless P = NP, also carries over to this

case.

2.5.2.3 The Student-Project Allocation problem with lecturer preferences over
Students including Ties and Lecturer targets (SPA-STL)

The Student-Project Allocation problem with lecturer preferences over Students including

Ties and Lecturer targets (SPA-STL) is an extension of SPA-ST in which lecturers have targets
indicating a preferred number of allocations (set by the matching administrator).

Formally, we define an instance of the SPA-STL in the same way as SPA-ST with the following
addition. For a given lecturer lk, their target is denoted tk and is in the range 0 ≤ tk ≤ dk

(where dk is the capacity for lecturer lk). Analogous definitions to those in SPA-ST exist
for the concepts of a matching, a blocking pair, stability, and the rank of a project (student)
on a student’s (lecturer’s) preference list. Additionally, in the SPA-STL setting, for a given
matching M , we adopt the notation M(si), M(pj) and M(lk), for student si, project pj and
lecturer lk, as defined in the SPA-ST case. We letMS denote the set of all stable matchings
in SPA-STL, and M denote the set of all matchings in I . There is currently no existing
literature on this topic. Targets are typically defined by a matching scheme administrator,
and reflect the ideal number of assignees for each lecturer as decided by the Head of School.
It is therefore desirable to find a matching that assigns each lecturer a number of students
that is as close to their target as possible.

2.5.3 The Student-Project Allocation problem with lecturer pref-
erences over Projects (SPA-P)

An instance of the Student Project Allocation problem with lecturer preferences over Projects
(SPA-P) is defined in an identical way to SPA-S with the following amendment. Each lecturer
lk ∈ L does not rank students, but instead ranks all projects in Pk in strict preference order.
The definition of a matching in SPA-P carries over from the SPA-S case.

Clearly, in this new setting the definition of a blocking pair changes.

Let M be a matching in an instance I of SPA-P. Let (si, pj) ∈ (S × P)\M be a student-
project pair, where pj is offered by lecturer lk. Then (si, pj) is a blocking pair of M if
properties 1, 2 and 3 hold as follows:

1. si finds pj acceptable;

2. si either prefers pj to M(si) or is unassigned in M ;

2.5. The Student-Project Allocation problem (SPA) 25

3. pj is undersubscribed and either (a), (b) or (c) holds as follows:

(a) si ∈M(lk) and lk prefers pj to M(si);

(b) si /∈M(lk) and lk is undersubscribed;

(c) si /∈ M(lk) and lk is full and lk prefers pj to their worst project pr satisfying
M(pr) 6= ∅;

where lk is the lecturer who offers pj .

In the SPA-P setting, a blocking coalition may also be formed in which there is a set of
students {si0 , ..., sia−1} assigned in M , such that each student sib would rather be assigned
to M(sib+1

) than M(sib), where addition is taken modulo a, a ≥ 2 and 0 ≤ b ≤ a− 1.

Then, a matching is stable if it admits no blocking pair or blocking coalition. Manlove and
O’Malley [48] showed that a stable matching must exist in an instance of SPA-P and can
be found in O(m) time. In contrast to the case for SPA-S, stable matchings may be dif-
ferent sizes, and we let MAX-SPA-P denote the problem of finding a maximum-sized stable
matching in an instance of SPA-P. MAX-SPA-P is NP-hard [48]. Iwama et al. [37] described
a 3

2
-approximation algorithm for MAX-SPA-P and showed that this problem is not approx-

imable within a factor of 21
19

.

Henceforth, the reader is invited to refer to the glossary for a reminder of acronym definitions.

26

Chapter 3

Degree-based stable matchings in
SMI

3.1 Introduction

3.1.1 Background

In this chapter we focus on fair stable matchings in SMI. The definition of SMI was presented
in Section 2.2.2. Recall the linear-time Man-oriented Gale-Shapley Algorithm [19] produces
the man-optimal stable matching, in which each man is assigned his best partner in any
stable matching. Unfortunately, the man-optimal stable matching is also the woman-pessimal

stable matching, in which each woman is assigned her worst partner in any stable matching.
Similarly, the Woman-oriented Gale-Shapley Algorithm produces a woman-optimal (and
man-pessimal) stable matching. This motivates the problem of finding a stable matching
that in some way balances the interests of both men and women. Several definitions of
fairness were introduced in Section 2.2.2.2 and are summarised in Table 3.1.

In Table 3.1 there are two new natural definitions of fairness that can be studied. Let I be
an instance of SMI, with set of stable matchings MS , and let M denote a stable matching
M ∈MS .

• We define the regret-equality score r(M) as |dU(M) − dW (M)| for a given stable
matching M . M is regret-equal if r(M) is minimum, taken over all stable matchings
inMS . Note that in general we will prefer a regret-equal stable matching M such that
dU(M) + dW (M) is minimised (e.g. d′(M) = (3, 3) rather than d′(M) = (10, 10)).

• We define the regret sum as dU(M) + dW (M) for a given stable matching M . M is
min-regret sum if dU(M) + dW (M) is minimum taken over all stable matchings in
MS .

3.1. Introduction 27

Cost Degree

Minimising
the maximum

min
M∈MS

max{cU(M), cW (M)} min
M∈MS

max{dU(M), dW (M)}

Balanced stable matching [14] Minimum regret stable matching [41]

Minimising
the absolute
difference

min
M∈MS

|cU(M)− cW (M)| min
M∈MS

|dU(M)− dW (M)|

Sex-equal stable matching [25] Regret-equal stable matching *

Minimising
the sum

min
M∈MS

(cU(M) + cW (M)) min
M∈MS

(dU(M) + dW (M))

Egalitarian stable matching [41] Min-regret sum stable matching *

Table 3.1: Commonly used definitions of fair stable matchings in SMI. Our contributions are
labelled with an *.

3.1.2 Motivation

Let mentees take the place of men and mentors take the place of women. Thus, mentees
(mentors) rank a subset of mentors (mentees) and may only be allocated one mentor (mentee)
in any matching. If we used the (renamed) Mentee-Oriented Gale-Shapley Algorithm [19]
to find a stable matching of mentees to mentors, then we would find a mentee-optimal sta-
ble matching M . However, as previously discussed, this would also be a mentor-pessimal
stable matching. A similar but reversed situation happens using the (also renamed) Mentor-
Oriented Gale-Shapley Algorithm [19]. Therefore we may wish to find a stable matching
that is in some sense fair between mentees and mentors using some of the fairness criteria
described in the previous section. All the types of fair stable matchings described in Table
3.1 are viable candidates. However, as described in Section 2.2.2.2, each of the problems
of finding a balanced stable matching or a sex-equal stable matching is NP-hard, and there
are existing polynomial time algorithms in the literature to find only two types of fair stable
matchings, namely an egalitarian stable matching (in O(m1.5) time) [14] and a minimum re-
gret stable matching (inO(m) time) [23]. Therefore, additional definitions of new, fair stable
matchings and polynomial-time algorithms to calculate them provide additional choice for a
matching scheme administrator.

Moreover, we may be interested in finding a measure that gives the worst-off mentee a partner
of rank as close as possible to that of the worst-off mentor. However, from our experimen-
tal work in Section 3.7, we found that there was no other type of optimal stable matching
from Table 3.1, that closely approximates the regret-equality score of the regret-equal stable
matching. Our results do show, however, that there exist regret-equal stable matchings with
balanced score, cost and degree that are close to that of a balanced stable matching, an egal-
itarian stable matching and a minimum regret stable matching, respectively. This motivates

3.1. Introduction 28

the search for efficient algorithms to produce a regret-equal stable matching that has “good”
measure relative to other types of fair stable matching.

Whilst the practical motivation for studying min-regret sum stable matchings may not be as
strong as in the regret-equality case, theoretical motivation comes from completing the study
of the algorithmic complexity of computing all types of fair stable matchings relative to cost
and degree, as shown in Table 3.1.

3.1.3 Contribution

In this chapter, we present two algorithms to find a regret-equal stable matching in an in-
stance I of SMI. Recall M0 and Mz are the man-optimal and woman-optimal stable match-
ings in I . First we present the Regret-Equal Degree Iteration Algorithm (REDI), to find
a regret-equal stable matching in an instance I of SMI, with time complexity O(d0nm),
where d0 = |dU(M0) − dW (M0)|. Second we present the Regret-Equal Stable Pair Algo-

rithm (RESP), to find a regret-equal stable matching in an instance I of SMI, with time
complexity O(n4). Additionally, we present the Min-Regret Sum Algorithm (MRS), to find
a min-regret sum stable matching in an instance I of SMI, with time complexity O(dsm),
where ds = dU(Mz) − dU(M0). In addition to this theoretical work, Algorithms REDI
and RESP were implemented and their performance was compared against Gusfield’s [23]
algorithm to enumerate all stable matchings in O(m + n|MS|) time. We found that Algo-
rithm REDI was significantly faster than Algorithm RESP and the enumeration algorithm.
Finally, experiments were conducted to compare six different types of optimal stable match-
ings (balanced, sex-equal, egalitarian, min-regret, regret-equal, min-regret sum), and outputs
from Algorithms REDI and RESP, over a range of measures (including balanced score,
sex-equal score, cost, degree, regret-equality score, regret sum). In addition to the observa-
tions already discussed in Section 3.1.2, we found a large variation in sex-equal scores and
regret-equality scores among the six different types of optimal stable matching, and, a far
smaller variation for the balanced score, cost, degree and regret sum measures. This smaller
variation also includes outputs of Algorithms REDI and RESP, indicating that we are able
to find a regret-equal stable matching in polynomial time with a likely good balanced score,
cost and degree using these algorithms. Indeed, we find in practice that Algorithm REDI
approximates these types of optimal stable matchings at an average of 9.0%, 1.1% and 3.0%

over their respective optimal values, for randomly-generated instances with n = 1000.

3.1.4 Structure of the chapter

The rest of the chapter is structured as follows. In Section 3.2 we give some preliminary
definitions for the chapter. Sections 3.3, 3.4 and 3.6 describe Algorithm REDI, Algorithm

3.2. Preliminary definitions 29

RESP and Algorithm MRS respectively, giving in each case pseudocode, correctness proofs
and time complexity calculations. The experimental evaluation is presented in Section 3.7.
Finally, conclusions and future work are given in Section 3.8.

3.2 Preliminary definitions

Throughout this chapter we will use the notation and terminology relating to structural as-
pects of stable matchings first introduced in Section 2.2.2.3. Additionally we also present
the following definitions. Let R be the set of rotations of I . Then Rj(M) is the set of
rotations that contain a women of rank j in M , that is, Rj(M) = {ρ ∈ R : (m,w) ∈
ρ ∧ rank(w,M(w)) = j)}. Let Mz be the woman-optimal stable matching [19]. For any
stable pair (mi, wj) /∈Mz, let φ(mi, wj) denote the unique rotation containing pair (mi, wj).
Let ρ be a rotation in the rotation digraph Rd(I). Denote by c(ρ) the closure of rotation ρ
(with respect to the precedence ordering on rotations defined in Section 2.2.2.3). Let c(R′)
denote

⋃
ρ∈R′ c(ρ) where R′ is a set of rotations. We say that the closure of an undefined

rotation or an empty set of rotations is the empty set.

3.3 Regret-Equal Degree Iteration Algorithm to find a

regret-equal stable matching

3.3.1 Description of the Algorithm

Algorithm REDI, which finds a regret-equal stable matching in a given instance I of SMI, is
presented as Algorithm 3.1. For an instance I of SMI, Algorithm REDI begins with opera-
tions to find the man-optimal and woman-optimal stable matchings,M0 andMz, found using
the Man-oriented and Women-oriented Gale-Shapley Algorithm [19]. The set of rotations R
is also found using the Minimal Differences Algorithm [32].

Let d′(M0) = (a0, b0). If a0 = b0 then we must have an optimal stable matching and so
we output M0 on Line 5. If a0 > b0 then any other matching M ′, where d′(M ′) = (a′, b′),
must have a′ ≥ a0 and b′ ≤ b0 since any rotation (or combination of rotations) eliminated
on the man-optimal matching M0 will make men no better off and women no worse off.
Therefore M0 is optimal and so it is returned on Line 5. Now suppose a0 < b0. Throughout
the algorithm we save the best matching found so far to the variable Mopt starting with M0.
We know that a matching exists with d0 = b0 − a0 and so we try to improve on this, by
finding a matching M with r(M) < d0.

3.3. Regret-Equal Degree Iteration Algorithm 30

We create several ‘columns’ of possible degree pairs of a regret-equal matching as follows.
The top-most pairs for columns k ≥ 1 are given by the sequence

(
(a0, b0), (a0 + 1, b0), (a0 + 2, b0), ..., (min{n, 2b0 − a0 − 1}, b0)

)
.

The sequence of pairs for column k (1 ≤ k ≤ min{2d0, n− a0 + 1}) from top to bottom is
given by

(
(a0+k−1, b0), (a0+k−1, b0−1), (a0+k−1, b0−2), ..., (a0+k−1,max{a0−d0+k, 1})

)
.

At this point as long as the size n of the instance satisfies n ≥ 2b0−a0−1 and a0−d0+1 ≥ 1,
the possible degree pairs of a regret-equal matching are shown in Figure 3.1. We know this
accounts for all possible degree pairs since, as above, if M ′ is any matching not equal to M0,
where d′(M ′) = (a′, b′), it must be that a′ ≥ a0 and b′ ≤ b0. Setting b′ = b0, the largest
a′ could be is given by b0 added to the maximum possible improved difference d0 − 1, that
is, a′ = b0 + d0 − 1 = 2b0 − a0 − 1. If n < 2b0 − a0 − 1 then we only consider the first
n− a0 + 1 columns in Figure 3.1. The a0− d0 + k value is obtained by noting that if x is the
final value of women’s degree for the column sequence above then a0 + k − 1− x = d0 − 1

and so x = a0 + k − d0. Figure 3.2 shows an example of the possible regret-equal degree
pairs when d′(M0) = (2, 6) and n ≥ 9.

The column operation (Algorithm 3.2) works as follows. Let local variable M hold the cur-
rent matching for this column, and let local variable Q be the set of rotations corresponding
to M . Iteratively we first test if r(M) < r(Mopt) setting Mopt to M if so. We now check
whether dU(M) ≥ dW (M). If it is, then any further rotation for this column will only make
r(M) larger, and so we stop iterating for this column, returning Mopt. Next, we find the
set of rotations Q′ in the closure of Rb(M) ⊆ R that are not already eliminated to reach
M . If eliminating these rotations would either increase the men’s degree or not decrease the
women’s degree, then we return Mopt. Otherwise, set M to be the matching found when
eliminating these rotations. If after the column operation, dU(Mopt) = dW (Mopt), then we
have a regret-equal matching and it is immediately returned on Lines 10 or 24 of Algorithm
3.1.

The column operation described above is called first from the man-optimal stable matching
M0 on Line 8, to iterate down the first column. Then for each man mi we do the following.
Let M be set to M0. Iteratively we eliminate (mi,M(mi)) from M by eliminating rotation
ρ and its predecessors (not already eliminated to reach M) such that (mi,M(mi)) ∈ ρ. We
continue doing this until both the men’s degree increases and rank(mi,M(mi)) = dU(M)

(in the same operation). This has the effect of jumping our focus from some column of
possible degree pairs, to another column further to the right with mi being one of the lowest

3.3. Regret-Equal Degree Iteration Algorithm 31

ranked men in M . Once we have moved to a new column we perform the column operation
described above. If either mi has the same partner in M as in Mz (hence there are no
rotations left that move mi) or dU(M) > dW (M) (further rotations will only increase the
regret-equality score), then we stop iterating for mi. In this case we restart this process for
the next man, or return Mopt if we have completed this process for all men. Note that since
at the end of a while loop iteration, if r(M) = 0 then Mopt is returned, it is not possible for
the condition dU(M) = dW (M) to ever be satisfied in the while loop clause.

3.3.2 Correctness Proof

In Theorem 3.3.2 we present the correctness proof for Algorithm REDI.

Proposition 3.3.1. Let I be an instance of SMI and let M and M ′ be stable matchings in

I where for each man mi ∈ U , rank(mi,M(mi)) ≤ rank(mi,M
′(mi)) and dU(M) =

dU(M ′). Let Q and Q′ denote the set of rotations eliminated from M0 to reach M and M ′

respectively. Then stable matching M ′′ with d′(M ′′) = d′(M ′) may be found by ensuring all

rotations in Rd = c({ρ ∈ R : ∃(m,w) ∈ ρ where dW (M) ≥ rank(w,m) > dW (M ′)}\Q)

are eliminated from M . Figure 3.3 shows a summary of degree pairs for M , M ′ and M ′′ in

the general case.

Proof. First, since rank(mi,M(mi)) ≤ rank(mi,M
′(mi)) and each rotation must make

some man worse off, we know that each rotation in Q must be eliminated to reach M ′ and
thereforeQ ⊆ Q′. Second, we also know that any rotation containing a woman at rank larger
than dW (M ′) must be eliminated fromM in order to reachM ′ (additional rotations may also
have been eliminated). But these are precisely the rotations in Rd, hence Rd ⊆ Q′. Let M ′′

be the stable matching found when eliminating Rd on M and let Q′′ = Q ∪ Rd denote the
unique set of rotations corresponding to M ′′. Then Q′′ ⊆ Q′ since Q ⊆ Q′ and Rd ⊆ Q′.

We observe the following.

• SinceQ ⊆ Q′′, it must be that dU(M) ≤ dU(M ′′), and as dU(M) = dU(M ′), it follows
that dU(M ′) ≤ dU(M ′′);

• Q ∪ Rd is the set of all rotations with pairs containing women of rank larger than
dW (M ′). Since Q′′ = Q ∪ Rd and all rotations in Q′′ are eliminated on M0 to reach
M ′′, it must be the case that dW (M ′′) ≤ dW (M ′);

• Since Q′′ ⊆ Q′, it must be that dU(M ′′) ≤ dU(M ′) and dW (M ′′) ≥ dW (M ′).

Hence d′(M ′′) = d′(M ′) as required.

3.3.
R

egret-E
qualD

egree
Iteration

A
lgorithm

32

r(M) Degree pairs (dU(M), dW (M))
k 1 2 ... b0 − a0 b0 − a0 + 1 b0 − a0 + 2 ... 2b0 − 2a0 − 1 2b0 − 2a0
d0 = b0 − a0 (a0, b0)
b0 − a0 − 1 (a0, b0 − 1) (a0 + 1, b0)
...
1 (a0, a0 + 1) (a0 + 1, a0 + 2) ... (b0 − 1, b0)
0 (a0, a0) (a0 + 1, a0 + 1) (b0, b0)
1 (a0, a0 − 1) (a0 + 1, a0) (b0 + 1, b0)
...
b0 − a0 − 2 (a0, a0 − d0 + 2) (a0 + 1, a0 − d0 + 3) (2b0 − a0 − 2, b0)
b0 − a0 − 1 (a0, a0 − d0 + 1) (a0 + 1, a0 − d0 + 2) (2b0 − a0 − 1, b0)

Figure 3.1: Possible regret-equal degree pairs when d′(M0) = (a0, b0), n ≥ 2b0 − a0 − 1 and a0 − d0 + 1 ≥ 1.

r(M) Degree pairs (dU(M), dW (M))
k 1 2 3 4 5 6 7 8
d0 = 4 (2, 6)
3 (2, 5) (3, 6)
2 (2, 4) (3, 5) (4, 6)
1 (2, 3) (3, 4) (4, 5) (5, 6)
0 (2, 2) (3, 3) (4, 4) (5, 5) (6, 6)
1 (2, 1) (3, 2) (4, 3) (5, 4) (6, 5) (7, 6)
2 (3, 1) (4, 2) (5, 3) (6, 4) (7, 5) (8, 6)
3 (4, 1) (5, 2) (6, 3) (7, 4) (8, 5) (9, 6)

Figure 3.2: Possible regret-equal degree pairs when d′(M0) = (2, 6) and n ≥ 9.

3.3. Regret-Equal Degree Iteration Algorithm 33

Algorithm 3.1 REDI(I), returns a regret-equal stable matching for an instance I of SMI.
Require: An instance I of SMI.
Ensure: Return a regret-equal stable matching Mopt.

1: M0 ←MGS(I) . M0 is the man-optimal stable matching found using the Man-oriented
Gale-Shapley Algorithm (MGS) [19].

2: Mz ←WGS(I) . Mz is the woman-optimal stable matching found using the
Woman-oriented Gale-Shapley Algorithm (WGS) [19].

3: R← Min-Diff(I) . R is the set of rotations found using the Minimal Differences
Algorithm (Min-Diff) [32].

4: if dU(M0) ≥ dW (M0) then
5: return M0

6: end if
7: Mopt ←M0 . Mopt is the best stable matching found so far.
8: Mopt ←REDI-Col(I,M0, ∅,Mopt) . Find the best matching for the first column.
9: if r(Mopt) = 0 then

10: return Mopt

11: end if
12: for each mi ∈ U do . For each man.
13: M ←M0 . M is the matching we start from for mi at the beginning of each

column.
14: Q← ∅ . Q is the set of rotations corresponding to M .
15: while (mi,M(mi)) /∈Mz and dU(M) < dW (M) do
16: ρ = φ(mi,M(mi))
17: a← dU(M)
18: Q′ ← c(ρ)\Q
19: M ←M/Q′ . Rotations in Q′ are eliminated in order defined by the rotation

poset of I .
20: Q← Q ∪Q′
21: if dU(M) > a and rank(mi,M(mi)) = dU(M) then . The men’s degree has

increased and mi is a worst ranked man in M .
22: Mopt ←REDI-Col(I,M,Q,Mopt) . Find the best matching for this column.

23: if r(Mopt) = 0 then
24: return Mopt

25: end if
26: end if
27: end while
28: end for
29: return Mopt

3.3. Regret-Equal Degree Iteration Algorithm 34

Algorithm 3.2 REDI-Col(I,M,Q,Mopt), subroutine for Algorithm 3.1. Column operation
for the current column dU(M). Returns Mopt, the best stable matching found so far (accord-
ing to the regret-equality score).
Require: An instance I of SMI, stable matching M , the closure of M , Q and Mopt the best

stable matching found so far (according to the regret-equality score).
Ensure: Finds the best stable matching (according to the regret-equality score) found when

incrementally eliminating women of worst rank from the current matching, without in-
creasing the men’s degree. If an improvement is made then Mopt is updated. Mopt is
returned. All variables used within Algorithm 3.2 are understood to be local.

1: a← dU(M)
2: while true do
3: if r(M) < r(Mopt) then
4: Mopt ←M
5: end if
6: if dU(M) ≥ dW (M) then . Further rotations for this column would only increase

the difference in degree of men and women.
7: return Mopt

8: end if
9: b← dW (M)

10: Q′ ← c(Rb(M))\Q
11: if dU(M/Q′) > a ∨ dW (M/Q′) = b then
12: return Mopt

13: else
14: M ←M/Q′ . Rotations in Q′ are eliminated in order defined by the rotation

poset of I .
15: Q← Q ∪Q′
16: end if
17: end while

(a0 + k − 1, b0)
(a0 + k − 1, b0 − 1)
(a0 + k − 1, b0 − 2)
...
d′(M)
...
d′(M ′) = d′(M ′′)
...
(a0 + k − 1,max{a0 − d0 + k, 1})

Figure 3.3: Degree pairs in column k = dU(M) for instance I , built as per the description in
Section 3.3.1.

3.3. Regret-Equal Degree Iteration Algorithm 35

Theorem 3.3.2. Let I be an instance of SMI. Any matching produced by Algorithm REDI is

a regret-equal stable matching of I .

Proof. There are four points in Algorithm 3.1’s execution where we return a matching,
namely Lines 5, 10, 24 and 29. First we show that if M is a matching returned at any of
these points then M is stable. Next we look at each of these points where a matching may
be returned and show they are regret-equal stable matchings.

Let M be the matching returned at any of the four points above. Then M is stable since it
is found by iteratively eliminating sets of rotations that form closed subsets of the rotation
poset of I (on Line 19 of Algorithm 3.1 and Line 14 of Algorithm 3.2) starting from the man-
optimal stable matching (created on Line 1). Since there is a 1-1 correspondence between
closed subsets of the rotation poset and the set of all stable matchings [32, Theorem 3.1], M
is a stable matching.

Let M1 be a matching that is returned on Line 5. Since M1 has been returned on Line 5 it
must be that dU(M1) ≥ dW (M1) and therefore by the same reasoning given in the second
paragraph of Section 3.3.1, M1 is a regret-equal stable matching.

Let M2 be a matching that is returned by either Line 10 or Line 24. To be returned at these
points r(M2) = 0 and therefore M2 is a regret-equal stable matching.

LetM3 be a matching that is returned on Line 29 and letM ′ be a regret-equal stable matching
such that dU(M ′) is minimum over all regret-equal stable matchings. We will prove that
r(M3) = r(M ′) by showing it will not have been possible for us to miss a stable matching
with regret-equality score equal to r(M ′) during the algorithm’s execution. First we show
that the column operation (Algorithm 3.2) must be executed for column dU(M ′). Then, we
show that during this column operation Mopt will be updated such that r(Mopt) = r(M ′).

Since M ′ is not returned on Line 5, M ′ 6= M0. If dU(M ′) = dU(M0) then clearly the col-
umn operation is executed on Line 8 for column dU(M ′). Assume therefore that dU(M ′) 6=
dU(M0). Without loss of generality let {m1,m2...,mk} be the set of men who are at rank
dU(M ′) in M ′. We enter the while loop on Line 15 for each man mj ∈ {m1,m2...,mk}. M
is initialised to M0. Successively, the algorithm eliminates all rotations in c(φ(mj,M(mj)))

that are not yet eliminated untilM(mj) = M ′(mj). This must be possible since (mj,M
′(mj))

∈M ′ and M ′ is a stable matching in I . During the while loop iteration that rotates mj down
to his M ′(mj) partner, it is not necessarily the case that the current matching M updates its
man-degree to dU(M ′) at this point. This is because although dU(M) = dU(M ′), an earlier
movement of mj in a previous while loop iteration may have brought some other man in
{m1,m2...,mk} down to his partner in M ′ already. Note that it is not possible for a man
to overshoot column dU(M ′) when moving mj down to his M ′(mj) partner since the set of
rotations we have eliminated to bring mi down to M ′(mi) is a subset of the rotations cor-

3.3. Regret-Equal Degree Iteration Algorithm 36

responding to M ′. However, for at least one of these men mi ∈ {m1,m2...,mk}, the while
loop iteration that moves mi down to M ′(mi) will also lead to dU(M) increasing to the same
value as dU(M ′). Assume we are beginning the while loop iteration on Line 15 for man
mi. Let M = M0. We continue eliminating rotations that have not yet been eliminated in
c(φ(mi,M(mi))) until M(mi) = M ′(mi). Our choice of mi ensures that the movement of
mi to his M ′(mi) partner occurs at the same time as dU(M) increases to dU(M ′) and so we
satisfy the conditions on Line 21 to perform the column operation (Algorithm 3.2) on M for
column dU(M ′).

From above we know that the column operation (Algorithm 3.2) will be executed for column
dU(M ′). Either we start this column operation with M0, or we have only eliminated the min-
imum number of rotations necessary to take mi down to M ′(mi) from M0. In either case we
know that rank(ml,M(ml)) ≤ rank(ml,M

′(ml)) for all ml ∈ U . For this column a regret-
equal stable matching may be found with degree pairs that are either (dU(M ′), dU(M ′) +

r(M ′)) or (dU(M ′), dU(M ′) − r(M ′)). The degree pair of matching M ′ is given by one of
the above pairs, but it may be possible for regret-equal stable matchings to exist in I with
both of the above degree pairs. Assume first that d′(M ′) = (dU(M ′), dU(M ′) + r(M ′)). The
algorithm will attempt to successively eliminate fromM rotations containing women of rank
dW (M). By Proposition 3.3.1, since rank(mi,M(mi)) ≤ rank(mi,M

′(mi)) for all mi ∈ U
and dU(M) = dU(M ′), we know the algorithm will continue this process until M is updated
to a regret-equal stable matching with d′(M) = d′(M ′) and so Mopt will be set to M with
r(Mopt) = r(M ′). Assume then that d′(M ′) = (dU(M ′), dU(M ′)− r(M ′)), where a regret-
equal stable matching may or may not exist with degree pair (dU(M ′), dU(M ′) + r(M ′)).
Then similar to before, the algorithm successively eliminates from M rotations contain-
ing women of rank dW (M). This may result in a regret-equal stable matching M being
found with d′(M) = (dU(M ′), dU(M ′) + r(M ′)) in which case Mopt will be set to M

with r(Mopt) = r(M ′). Assume this is not the case. Then, by Proposition 3.3.1, since
rank(mi,M(mi)) ≤ rank(mi,M

′(mi)) for all mi ∈ U and dU(M) = dU(M ′), we know the
algorithm will continue eliminating rotations containing women of rank dW (M) until M is
updated to a regret-equal stable matching with d′(M) = d′(M ′) and so Mopt will be set to
M with r(Mopt) = r(M ′) as above.

Therefore any matching returned by Algorithm REDI is a regret-equal stable matching.

3.3.3 Time complexity

Theorem 3.3.3. Let I be an instance of SMI. Algorithm REDI always terminates within

O(d0nm) time, where d0 = |dU(M0)− dW (M0)|, n is the number of men or women in I , m

is the total length of all preference lists and M0 is the man-optimal stable matching.

3.4. Regret-Equal Stable Pair Algorithm 37

Proof. Algorithm 3.1 begins by calculating the man-optimal stable matching and woman-
optimal stable matching using the Gale-Shapley Algorithms in O(m) time [19], and the set
of all rotations using the Minimal Differences Algorithm in O(m) time [32]. The for loop
on Line 12 of Algorithm 3.1 iterates over all men, n times, where n is the number of men
or women. During the nested while loop on Line 15, each man mi may be rotated down
his preference list on Line 19, 2d0 − 1 times (the maximum possible number of columns
from Figure 3.1 minus 1). Rotations are eliminated on Line 19 of Algorithm 3.1 and Line 14
of Algorithm 3.2 successively, beginning at the man-optimal stable matching M0, meaning
O(m) rotations are eliminated in total for each while loop iteration at Line 15 of Algorithm
3.1. This may also be viewed as O(m) man-woman pair changes since the number of pos-
sible man-woman pairs in I is O(m) and each pair existing in the set of rotations is unique.
Therefore Algorithm REDI runs in O(d0nm) time and since preference lists of men and
women are finite, the algorithm terminates.

3.4 Regret-Equal Stable Pair Algorithm to find a regret-

equal stable matching

3.4.1 Description of the Algorithm

For an instance I of SMI, Algorithm 3.3 begins by finding the man-optimal and woman-
optimal stable matchings, M0 and Mz, using the Man-oriented and Women-oriented Gale-
Shapley Algorithms [19]. Also, we find the set of all rotations R of I using the Minimal
Differences Algorithm [32], the rotation digraph Rd(I) and the set of stable pairs S of I .
The transitive closure of Rd(I), denoted Π, is created by finding all rotations reachable
in Rd(I) from each rotation ρ ∈ R [25, p. 115]. For each pair (mi, wj) ∈ S\M0, we
construct τ(mi, wj) such that τ(mi, wj) denotes the rotation that moves man mi to woman
wj . Similarly, for each pair (mi, wj) ∈ S\Mz, we construct φ(mi, wj) such that φ(mi, wj)

denotes the rotation that moves mi from wj .

The possible degree pairs of a regret-equal matching in I are given by

P = {dU(M0), dU(M0) + 1, ..., dU(Mz)} × {dW (Mz), dW (Mz) + 1, ..., dW (M0)}.

We define the following order ≺ over P .

Definition 3.4.1. Let P be the set of degree pairs as defined above. Then the relation ≺ over

3.4. Regret-Equal Stable Pair Algorithm 38

P is given by the following.

(a, b) ≺ (a′, b′) ∈ P iff |a− b| < |a′ − b′|

or |a− b| = |a′ − b′| and a+ b < a′ + b′

Note that an increasing ordering of elements over the ≺ relation is consistent with an in-

creasing regret-equality score.

During the main for loop of Algorithm 3.3 on Line 11, we iterate through the possible degree
pairs of P ′ in order, where P ′ is given by the pairs in P sorted in increasing order according
to the ≺ relation above. For any pair (a, b) ∈ P ′ that is considered according to this order,
we immediately return any stable matching Mopt such that particular conditions (described
below) hold with dU(Mopt) = a and dW (Mopt) = b. Therefore as P ′ is sorted with respect to
an increasing regret-equality score, we ensure that a regret-equal stable matching is returned.
The minimisation of a + b is not necessary when finding a regret-equal stable matching,
however it seems reasonable to assume that a stable matching M ′ with degree pair d′(M ′) =

(1, 2), for example, would be preferred to a stable matching M ′′ with degree pair d′(M ′′) =

(9, 10), despite both having the same regret-equality score. As an example, the following
provides the order of iteration over degree pairs for a complete instance of size 3 where
dU(M0) = dW (Mz) = 1 and dU(Mz) = dW (M0) = 3.

(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)

For each of these degree pairs we first truncate instance I at the given degree pair (a, b),
resulting in truncated instance IT . The procedure for this is given in Algorithm 3.4 and
comprises the truncation of all men’s and women’s preference lists below rank a and b re-
spectively. The preference lists are then made consistent by removing any woman wj from
man mi’s list where wj does not rank mi and vice versa. Truncation is performed, since we
know that in a stable matching with degree pair (a, b), no man (respectively woman) can be
assigned a partner lower down their preference list than rank a (respectively b). Therefore,
when seeking a stable matching with degree pair (a, b), truncation will not have an effect on
whether or not a stable matching of this type can be found, but gives the added benefit of
reducing the size of the set of stable matchings compared to the original instance. Next the
man-optimal stable matching MT

0 of IT is found. If |MT
0 | < n then we end this iteration of

the main for loop since there can be no stable matching of IT that is also a stable matching
of I . However, if |MT

0 | = n then we do the following. First, find the woman-optimal stable
matching MT

z of IT . Next, we find all rotations RF in R that contain a pair with the man’s
rank no better than that of his partner in MT

0 and better than that of his partner in MT
z . In

Proposition 3.4.3 we show that if a rotation contains one pair within this range, then all pairs

3.4. Regret-Equal Stable Pair Algorithm 39

are within this range. The stable pairs SF are then defined to be the union of all pairs in RF

and all pairs in MT
z .

Let RT and ST denote the set of all rotations and stable pairs of IT , respectively. Later
we will prove than SF = ST and so SF is also the set of all stable pairs in IT . For each
pair of (possibly the same) stable pairs (m1, w1), (m2, w2) ∈ SF , where rank(m1, w1) = a

and rank(w2,m2) = b (with rank calculated according to I), we test whether (m1, w1) and
(m2, w2) exist in the same stable matching of I by checking that φ(m2, w2) does not precede
τ(m1, w1), (assuming both rotations are defined). Note that τ(m1, w1) may not be defined if
(m1, w1) ∈MT

0 and φ(m2, w2) may not be defined if (m2, w2) ∈MT
z . Since (m1, w1) ∈ ST ,

there is a stable matching M1 ∈ IT with (m1, w1) ∈ M1. We know rank(m2, w2) = b and
dW (M1) ≤ b, so τ(m2, w2) must have been eliminated to reach M1, assuming τ(m2, w2)

is defined. But (m1, w1) ∈ M1, and hence it is not possible for φ(m1, w1) to precede
τ(m2, w2), assuming both these rotations are defined. Thus this condition, described in
Gusfield and Irving’s book [25, p. 115], is not tested. If the condition of Line 21 is not satis-
fied, then there does not exist a stable matching containing pairs (m1, w1) and (m2, w2) in I ,
and so we move on to the next pair of stable pairs. If a stable matching does exist that satisfies
this condition, then we find the rotation (if it is defined) that creates pair (m1, w1), namely
τ(m1, w1), and the set of rotations RG that contains any pair with a woman of rank > b.
Then, the regret-equal stable matching Mopt is found by eliminating c(τ(m1, w1)) ∪ c(RG)

on M0.

3.4.2 Correctness Proof

In the proofs of this section we will use the following notation and terminology. Let I be an
instance of SMI. Let IT be the truncated instance of I where men are truncated below rank a
and women below rank b according to Algorithm 3.4, letMT

S be the set of stable matchings
in IT , and let ST be the set of stable pairs in IT . In all cases, the ranks of men on women’s
preference lists (and vice versa) are all calculated with respect to instance I . Recall thatMS

is the set of stable matchings in I . Then, let

reduced(MS) = {M ∈MS : ∀(mi, wj) ∈M, rank(mi, wj) ≤ a ∧ rank(wj,mi) ≤ b}.

In this section we begin by showing that the set of stable pairs in rotations of the truncated
instance IT , and the set of stable pairs in the filtered rotations of I created on Line 16 of Al-
gorithm 3.3, are equal. We then show that if two of these stable pairs (m1, w1) and (m2, w2),
where rank(m1, w1) = a and rank(w2,m2) = b, can coexist in a stable matching, then it
must be the case that they can coexist in a stable matching with degree pair (a, b). Finally,
we prove that when a matching is returned it must be a regret-equal stable matching.

3.4. Regret-Equal Stable Pair Algorithm 40

Algorithm 3.3 RESP(I), returns a regret-equal stable matching for an instance I of SMI.
Require: An instance I of SMI.
Ensure: Return a regret-equal stable matching Mopt.

1: M0 ←MGS(I) . M0 is the man-optimal stable matching found using the Man-oriented
Gale-Shapley Algorithm (MGS) [19].

2: Mz ←WGS(I) . Mz is the woman-optimal stable matching found using the
Woman-oriented Gale-Shapley Algorithm (WGS) [19].

3: R← Min-Diff(I) . R is the set of rotations found using the Minimal Differences
Algorithm (Min-Diff) [32].

4: S ← {(mi, wj) : (mi, wj) ∈Mz ∨ (mi, wj) ∈ R}
5: Construct the rotation digraph Rd(I) of I
6: Construct transitive closure Π of Rd(I), so that Π(ρi, ρj) = 1 iff ρi precedes ρj in Rd(I)
. [25, p. 115]

7: Construct rotation τ(mi, wj) for each (mi, wj) ∈ S\M0 . [25, p. 115]
8: Construct rotation φ(mi, wj) for each (mi, wj) ∈ S\Mz . [25, p. 115]
9: P ← {dU(M0), dU(M0) + 1, ..., dU(Mz)} × {dW (Mz), dW (Mz) + 1, ..., dW (M0)}

10: P ′ ← sort(P,≺)
11: for each (a, b) ∈ P ′ in order do
12: IT ←RESP-Truncate(I, (a, b))
13: MT

0 ← MGS(IT) . MT
0 is the man-optimal stable matching found using the

Man-oriented Gale-Shapley Algorithm (MGS) [19].
14: if |MT

0 | = n then
15: MT

z ←WGS(IT) . MT
z is the woman-optimal stable matching found using the

Woman-oriented Gale-Shapley Algorithm (WGS) [19].
16: RF ← RESP-Filter(I, R,MT

0 ,M
T
z)

17: SF ← {(mi, wj) : (mi, wj) ∈MT
z ∨ (mi, wj) ∈ RF}

18: for each {{(m1, w1), (m2, w2)} ⊆ SF : rank(m1, w1) = a, rank(w2,m2) = b}
do . Ranks are calculated with respect to I .

19: τ1 ← τ(m1, w1)
20: φ2 ← φ(m2, w2)
21: if τ1 is undefined or φ2 is undefined or Π(φ2, τ1) 6= 1 then
22: Let RG be the set of rotations in I containing any pair with a woman of

rank > b.
23: Q← c(τ(m1, w1)) ∪ c(RG)
24: Mopt ←M0/Q . Rotations in Q are eliminated in order defined by the

rotation poset of IT .
25: return Mopt

26: end if
27: end for
28: end if
29: end for

3.4. Regret-Equal Stable Pair Algorithm 41

Algorithm 3.4 RESP-Truncate(I, (a, b)), subroutine for Algorithm 3.3. Truncates the
given instance I at the given degrees a and b for men and women respectively. Returns
truncated instance I .
Require: An instance I of SMI and integers a and b such that 1 ≤ a ≤ n and 1 ≤ b ≤ n.
Ensure: Return truncated instance I .

1: for i ∈ {1, 2, ..., n} do
2: prefT (mi)← copy of first min{a, |prefT (mi)|} elements of pref(mi) . pref(mi) is

the preference list of man mi

3: prefT (wi)← copy of first min{b, |prefT (wi)|} elements of pref(wi) . pref(wi) is
the preference list of woman wi

4: end for
5: for i ∈ {1, 2, ..., n} do
6: for wj ∈ prefT (mi) do
7: if mi is not in prefT (wj) then
8: Remove wj from prefT (mi) . Size of prefT (mi) is reduced by 1
9: end if

10: end for
11: for mj ∈ prefT (wi) do
12: if wi is not in prefT (mj) then
13: Remove mj from prefT (wi) . Size of prefT (wi) is reduced by 1
14: end if
15: end for
16: end for
17: return I

Algorithm 3.5 RESP-Filter(I, R,MT
0 ,M

T
z), subroutine for Algorithm 3.3. Filters rotations

in R, removing rotations which contain pairs with men’s rank better than in MT
0 or create

pairs with men’s rank worse than in MT
z . Returns RF , the filtered rotations.

Require: An instance I of SMI, the set of all rotations R, and stable matchings MT
0 and MT

z

such that for all mi ∈ U , rank(mi,M
T
0 (mi)) ≤ rank(mi,M

T
z (mi)).

Ensure: Return the filtered rotations RF .
1: RF ← ∅
2: for ρ ∈ R do
3: if ∃(mi, wj) ∈ ρ, rank(mi,M

T
0 (mi)) ≤ rank(mi, wj) < rank(mi,M

T
z (mi)) then

4: RF ← RF ∪ {ρ}
5: end if
6: end for
7: return RF

3.4. Regret-Equal Stable Pair Algorithm 42

First, in Lemma 3.4.2, we show that the set of stable matchings in IT is equal to reduced(MS),
as defined above.

Lemma 3.4.2. MT
S = reduced(MS).

Proof. Let stable matching M ′ of size n exist in MT
S . If we transform IT to I then we

are adding preference list pairs (mi, wj) where either rank(mi, wj) > rank(mi,M
′(mi)) or

rank(wj,mi) > rank(wj,M
′(wj)), or both. In all cases (mi, wj) cannot constitute a blocking

pair and so M ′ must be stable in I with M ′ ∈ MS . Also, since M ′ is in IT it must be the
case that rank(mi, wj) ≤ a and rank(wj,mi) ≤ b. HenceMT

S ⊆ reduced(MS).

Let stable matching M ′′ exist in reduced(MS). By the definition of reduced(MS) and IT
all pairs in M ′′ must exist in preference lists of the truncated instance IT . If we transform
I to IT we will only be removing some pairs from preference lists that do not exist in M ′′.
Therefore since we are only removing pairs, it is not possible to introduce pairs into IT that
would block M ′′ and so M ′′ is stable in IT . HenceMT

S ⊇ reduced(MS).

ThereforeMT
S = reduced(MS), as required.

Next, Proposition 3.4.3 proves that it is not possible for a rotation to contain a pair of stable
pairs, such that for a given stable matching M , the man of one stable pair prefers his partner
in the rotation to his partner in M and the man of the other stable pair does not. Essentially,
this shows that stable pairs of rotations are bounded by stable pairs of stable matchings.

Proposition 3.4.3. Let M be any stable matching in I and let R be the set of rotations in I .

Then it is not possible for any rotation ρ ∈ R to contain pairs (m1, w1) and (m2, w2) such

that rank(m1, w1) < rank(m1,M(m1)) and rank(m2, w2) ≥ rank(m2,M(m2)).

Proof. Assume for contradiction that ρ contains the pairs (m1, w1) and (m2, w2) described
in the statement of this proposition. Since ρ contains pair (m1, w1) where rank(m1, w1) <

rank(m1,M(m1)), we know ρ must exist in the set of rotations corresponding to M . Since
ρ must be eliminated to reach M and contains pair (m2, w2) with rank(m2, w2) ≥ rank(m2,

M(m2)), we know that (m2,M(m2)) cannot exist in M , a contradiction.

In Lemma 3.4.4, we show that SF , created on Line 16 of Algorithm 3.3, is equal to the set
of stable pairs of IT .

Lemma 3.4.4. Let SRT be the set of all stable pairs in rotations RT of IT . Let RF denote

the set of filtered rotations created on Line 16 of Algorithm 3.3, and let SRF denote the set of

stable pairs in rotations of RF . Then, SRT = SRF .

Furthermore ST = SF where ST is the set of all stable pairs in IT and SF is the set of stable

pairs created on Line 17 of Algorithm 3.3.

3.4. Regret-Equal Stable Pair Algorithm 43

Proof. LetR denote all rotations of I . LetMT
0 andMT

z denote the man-optimal and woman-
optimal stable matchings of IT respectively. Then MT

0 and MT
z are also in reduced(MS),

by Lemma 3.4.2. Let RT
0 and RT

z be the set of rotations associated with MT
0 and MT

z in I
respectively. Since MT

0 is the man-optimal stable matchings in IT , we know that for any
other stable matching M ∈ MT

S\MT
0 , rank(mi,M

T
0 (mi)) ≤ rank(mi,M(mi)) for each mi

in IT . By Lemma 3.4.2,MT
S = reduced(MS) and so we also know that in I , for any other

stable matching M ∈ reduced(MS)\MT
0 , rank(mi,M

T
0 (mi)) ≤ rank(mi,M(mi)) for each

mi. It follows then that in I , at least every rotation in RT
0 must have been eliminated on M0

to reach any other stable matching in reduced(MS)\MT
0 .

We first show that SRT ⊆ SRF . From above we know there must exist a minimum set
of rotations R′ ⊆ R, subsets of which take us from MT

0 to any other stable matchings
in reduced(MS)\MT

0 . Let S ′ be the set of stable pairs in R′. By definition, SRT is the
set of stable pairs involved in rotations RT of IT . It is therefore also equal to the set of
stable pairs involved in stable matchings of MT

S\MT
z . Hence SRT is the minimum set of

stable pairs of rotations that can take us from MT
0 to all other stable matchings inMT

S\MT
0 ,

but then as MT
S = reduced(MS), each of the pairs in SRT must also exist in the set of

rotations R′ and so we have SRT ⊆ S ′. Since R′ was defined to be a minimum set of
rotations, we know that every rotation in R′ contains at least one stable pair (m′i, w

′
j) with

rank(m′i,M
T
0 (m′i)) ≤ rank(m′i, w

′
j) < rank(m′i,M

T
z (m′i)). But then, by Proposition 3.4.3,

any rotation of this type can only contain other stable pairs also within this range. Since SRF
is precisely the set of stable pairs of all rotations where some stable pair exists in the range
described above, S ′ ⊆ SRF . Finally, as SRT ⊆ S ′ we have SRT ⊆ SRF .

Now we show that SRF ⊆ SRT . Assume that there is some stable pair (mk, wl) in SRF .
We aim to prove that (mk, wl) ∈ SRT . Since (mk, wl) ∈ SRF , φ(mk, wl), the rotation
that moves mk from wl, must exist in RF . Thus φ(mk, wl) contains at least one stable pair
(m′i, w

′
j) ∈ φ(mk, wl) such that rank(m′i,M

T
0 (m′i)) ≤ rank(m′i, w

′
j) < rank(m′i,M

T
z (m′i)).

Then by Proposition 3.4.3, all stable pairs of φ(mk, wl) are within this range, and so we
have rank(mk,M

T
0 (mk)) ≤ rank(mk, wl) < rank(mk,M

T
z (mk)). Since (mk, wl) is a stable

pair and rank(mk, wl) < rank(mk,M
T
z (mk)), it must be the case that c(τ(mk, wl)) ⊆ RT

z ,
where rotation τ(mk, wl) may or may not be defined in I . From the first paragraph in
this proof, we also know that in I , RT

0 ⊆ RT
z , and so RT

0 ∪ c(τ(mk, wl)) ⊆ RT
z . Let

M ′ be the matching found when RT
0 ∪ c(τ(mk, wl)) is eliminated on M0. Then for all

men mi, rank(mi,M
′(mi)) ≤ rank(mi,M

T
z (mi)) meaning dU(M ′) ≤ a. Also, since

RT
0 ⊆ RT

0 ∪ c(τ(mk, wl)), for all women wj , rank(wj,M
′(wj)) ≤ rank(wj,M

T
0 (wj)) mean-

ing dW (M ′) ≤ b. Therefore, we have M ′ ∈ reduced(MS), and so by Lemma 3.4.2,
M ′ ∈ MT

S . Since we also know from above that rank(mk, wl) < rank(mk,M
T
z (mk)), it

must be that (mk, wl) /∈MT
z and so (mk, wl) ∈ SRT . Hence SRF ⊆ SRT .

Therefore SRT = SRF , as required.

3.4. Regret-Equal Stable Pair Algorithm 44

Recall SF is the set of stable pairs created on Line 17 of Algorithm 3.3, and comprises the
union of all stable pairs in SRF and MT

z . Since SRT = SRF from above, and MT
z exists in

both IT and I , it follows that SF = ST .

In Lemma 3.4.5, we prove that if two stable pairs {(m1, w1), (m2, w2)} exist in SF , with
rank(m1, w1) = a and rank(w2,m2) = b, then there must exist a stable matching in the
original instance I with degree pair (a, b).

Lemma 3.4.5. Let Mopt be the matching returned on Line 25 of Algorithm 3.3 and let IT be

the truncated instance of I created on Line 12 during the final iteration of the for loop on

Line 11. Finally, let (m1, w1) and (m2, w2) be the stable pairs in SF with rank(m1, w1) = a

and rank(w2,m2) = b, iterated over in the final iteration of the for loop on Line 18. Then,

Mopt ∈MS with d′(Mopt) = (a, b).

Proof. Since (m1, w1) ∈ SF and (m2, w2) ∈ SF , by Lemma 3.4.4, (m1, w1) ∈ ST and
(m2, w2) ∈ ST and so there are stable matchings M1 and M2 inMT

S with (m1, w1) ∈ M1

and (m2, w2) ∈ M2. Then M1 and M2 are also stable matchings in I , by Lemma 3.4.2. Let
R1 and R2 be the rotations associated with M1 and M2 respectively in I .

Mopt is constructed by eliminating all rotations in Ropt = c(τ(m1, w1)) ∪ R′ where R′ =

c({ρ ∈ R : ∃(mi, wj) ∈ ρ with rank(wj,mi) > b}). We now look at a specific two-step
construction order for Mopt to show d′(Mopt) = (a, b).

• As a first step towards Mopt, construct matching M ′ = M0/R
′. It must be that w2 has

a rank≤ b in M ′. Since dW (M2) = b, we know at least all rotations in R′ must also be
eliminated on M0 to reach M2, and so R′ ⊆ R2. Then, as (m2, w2) ∈ M2, φ(m2, w2),
if it exists, cannot be in R2 and so is also not in R′. Therefore since w2 has a rank ≤ b

in M ′ and cannot have moved from her rank b partner, it follows that (m2, w2) ∈M ′.

• The second step involves eliminating c(τ(m1, w1))\R′ on M ′. Similar to the above,
since dW (M1) ≤ b, we know at least all rotations in R′ must also be eliminated on
M0 to reach M1, and so R′ ⊆ R1. As R′ ⊆ R1 we also know that dU(M ′) ≤ a.
Additionally, it must be possible for us to eliminate c(τ(m1, w1))\R′ on M ′ without
increasing any man’s rank beyond a, as M1 ∈ MT

S . This elimination may cause
some women to improve their rank, however, since φ(m2, w2) (if it is defined) cannot
precede τ(m1, w1) (if it is defined), it is not a requirement that w2 is moved from
m2 in order to create pair (m1, w1). Therefore, as c(τ(m1, w1))\R′ involves only the
minimum rotations necessary to ensure pair (m1, w1) exists in Mopt, both (m1, w1)

and (m2, w2) must exist in Mopt with d′(Mopt) = (a, b). Since d′(Mopt) = (a, b),
Mopt ∈ reduced(MS) and it follows that Mopt ∈MS .

3.4. Regret-Equal Stable Pair Algorithm 45

The above argument assumes a specific construction order of Mopt, through eliminating
first R′ and then c(τ(m1, w1)) on M0. However, since the closed subsets of the rotation
poset Rp(I) are in one-to-one correspondence with the set of stable matchings [32], as long
as the order of rotation elimination in Rd(I) is respected, the same final stable matching
will be produced. Therefore, Line 25 of Algorithm 3.3 will always produce Mopt such that
d′(Mopt) = (a, b) and Mopt ∈MS .

Finally, Proposition 3.4.6 shows that a matching is always returned by Algorithm 3.3 and
Theorem 3.4.7 proves that any matching returned must be a regret-equal stable matching.

Proposition 3.4.6. Algorithm 3.3 always terminates by returning a matching on Line 25.

Proof. We know MS must contain at least one stable matching [19]. Let M be any sta-
ble matching of I and let dU(M) = a and dW (M) = b. Then there exist stable pairs
(m1, w1) and (m2, w2) in M (where (m1, w1) and (m2, w2) may be the same pair) such that
rank(m1, w1) = a and rank(m2, w2) = b.

Assume for contradiction that no matching is returned by Algorithm 3.3. At some point
during the algorithm’s execution we iterate over the for loop on Line 11 with degree pair
(a, b) and create the truncated instance IT . By Lemma 3.4.2, as M ∈ MS , M must also
exist inMT

S . By Lemma 3.4.4, the set of stable pairs SF we iterate over on Line 17, is equal
to the set of all stable pairs ST in IT . Since M ∈ MT

S from above, it must be that (m1, w1)

and (m2, w2) exist in SF . As rank(m1, w1) = a and rank(m2, w2) = b, we must enter the for
loop on Line 18 and deduce that φ(m2, w2) does not precede τ(m1, w1) in the rotation poset.
This cannot be the case since both (m1, w1) and (m2, w2) exist in some matching M of I .
Hence, we return a matching on Line 25, a contradiction.

Therefore Algorithm 3.3 terminates by returning a matching on Line 25.

Theorem 3.4.7. Let I be an instance of SMI. Algorithm 3.3 always produces a regret-equal

stable matching of I .

Proof. By Proposition 3.4.6, Algorithm 3.3 must return a matching Mopt on Line 25. Let
(a, b) be the degree pairs during the final iteration of the main for loop on Line 11, and let
(m1, w1) and (m2, w2) be the (possibly same) stable pairs inMopt such that rank(m1, w1) = a

and rank(w2,m2) = b in the final iteration of the for loop on Line 18. By Lemma 3.4.5,
Mopt ∈MS with d′(Mopt) = (a, b).

Suppose for contradiction that Mopt is not a regret-equal stable matching. Then there exists
a stable matching M ′ ∈ MS such that d′(M ′) = (a′, b′) and |a′ − b′| < |a − b|. During
an earlier iteration of the for loop on Line 11, we would have iterated over the degree pairs
(a′, b′). Using similar reasoning to the proof of Proposition 3.4.6, a matchingM ′′ would have

3.4. Regret-Equal Stable Pair Algorithm 46

r(M) Degree pairs in P
0 (4, 4) (5, 5)
1 (3, 4) (4, 5) (5, 4) (5, 6)
2 (2, 4) (3, 5) (4, 6) (5, 7)
3 (2, 5) (3, 6) (4, 7)
4 (2, 6) (3, 7)
5 (2, 7)

Figure 3.4: Degree pairs in P = {2, 3, 4, 5}×{4, 5, 6, 7}, sorted according to regret-equality
score.

been returned on Line 25 with d′(M ′′) = (a′, b′). But then Mopt cannot be returned where
d′(Mopt) = (a, b), a contradiction. Hence, Mopt is a regret-equal stable matching.

3.4.3 Time complexity

Theorem 3.4.8. Algorithm 3.3 always terminates within O(n4) time, where n is the number

of men or women.

Proof. The construction of the transitive closure on Line 6 dominates all processes before
Line 10, taking O(m2) time [25, p. 115]. There are (dU(Mz)− dU(M0) + 1) ∗ (dW (M0)−
dW (Mz) + 1) pairs in P = {dU(M0), dU(M0) + 1, ..., dU(Mz)} × {dW (Mz), dW (Mz) +

1, ..., dW (M0)} on Line 9. With the aid of suitable data structures, the stable pairs of P may
be sorted on Line 10 (according to the ≺ relation) in a time linear in the size of P . This may
be achieved by the following process. Maintain a linked list for each possible regret-equality
score. Next, iterate over each man-degree a and each woman-degree b, adding degree pair
(a, b) to the end of the appropriate linked list. The sorted order of P may then be found by
iterating over each of the linked lists in increasing regret-equality score order. An example
of this may be seen in Figure 3.4, where P = {2, 3, 4, 5} × {4, 5, 6, 7}.

The for loop on Line 11 iterates over degree pairs in P , sorted as described above (bounded
by n2). The truncation of instance I on Line 12 is described in Algorithm 3.4, and comprises
two linear-time passes through the preference lists of all men and women, taking O(m)

time (in reality this could be implemented with one linear time pass through each preference
list). The operation to filter rotations on Line 16, described in Algorithm 3.5, requires us
to look at only one pair in each rotation in R to determine whether the man in that pair
has rank no better than that of his partner in MT

0 and better than that of his partner in MT
z .

This is because, by Proposition 3.4.3, if a rotation contains one pair within this range, then
all pairs are within this range. Since we only check one pair per rotation in R, the time
complexity for this operation is linear in |R| and so bounded by O(m). We are then able to
find and iterate over all pairs of stable pairs in SF on Line 18 in O(n2) time, since there are

3.5. Regret-equal stable matchings with minimum cost 47

a maximum of n pairs in SF with man’s rank a and a maximum of n pairs with woman’s
rank b. A simple pre-processing step would find these potential candidates in O(n2) time.
For each of these iterations, there is an O(1) time operation to check whether the current pair
of stable pairs belong together in a stable matching [25, p. 115]. So far we have the time
complexity of O(n4) within the for loop on Line 11. The elimination of rotations to form
Mopt would appear to increase the time complexity by a factor ofO(n2), however, sinceMopt

is immediately returned after creation, this only occurs once.

Hence for Algorithm 3.3, we have an overall time complexity of O(n4).

3.5 Regret-equal stable matchings with minimum cost

We seek a regret-equal stable matching with minimum cost over all regret-equal stable
matchings. This may be achieved in O(nm2.5) time using the following process.

For a given SMI instance I , first find the regret-equality score r of the regret-equal stable
matching using Algorithm REDI in O(d0nm) time. Then, iterate over all possible man-
woman degree pairs (a, b) such that |a − b| = r (there are O(n) such pairs). For each such
degree pair (a, b), truncate men’s preference lists at a and women’s preference lists at b in
O(m) time using Algorithm RESP-Truncate from the previous section, creating instance
I ′. Then, for each of the O(m) man-woman pairs (mi, wj) in I ′, fix mi with his ath-choice
partner and wj with her bth-choice partner (where ranks are taken with respect to instance
I), if possible. If this is not possible then continue to the next degree pair. We define the
deletion of pair (mi, wj) as the removal of wj from mi’s preference list and the removal of
mi from wj’s preference list. Assume that w′j is mi’s ath-choice partner, and m′i is wj’s
bth-choice partner. In I ′, we now delete pairs (m′′i , w

′′
j) for any w′′j such that mi prefers

w′′j to w′j and w′′j prefers mi to m′′i . Also delete the pair (m′′i , w
′′
j) for any m′′i such that wj

prefers m′′i to m′i and m′′i prefers wj to w′′j . Next we delete all remaining preference list
elements of mi except w′j and all remaining preference list elements of wj except m′i. The
Gale-Shapley Algorithm is run to check that a stable matching of size n exists in I ′. If no
such stable matching exists then we move on to the next degree pair. Feder’s Algorithm may
then be used to find an egalitarian stable matching in the reduced SMI instance I ′ in O(m1.5)

time (using the original ranks in I as costs). This makes a total of O(nm2.5) time to find a
regret-equal stable matching with minimum cost.

A theoretical bound may exist for the cost of a regret-equal stable matching with minimum
cost in relation to the cost of an egalitarian stable matching. However, as we show in the
following example, it is possible for a regret-equal stable matching with minimum cost to
have a cost greater than twice that of an egalitarian stable matching. Let I0 be the example
SM instance shown in Table 3.2. Instance I0 has four stable matchings, also shown in this

3.6. Algorithm to find a min-regret sum stable matching 48

Agent Preference lists M1 M2 M3 M4

m1: w5 w3 w4 w1 w6 w2 w7 w8 w9 w10 w11 w12 w1 w2 w2 w1

m2: w2 w1 w4 w5 w6 w3 w7 w8 w9 w10 w11 w12 w2 w3 w3 w2

m3: w3 w1 w2 w5 w6 w4 w7 w8 w9 w10 w11 w12 w3 w4 w4 w3

m4: w4 w1 w2 w3 w6 w5 w7 w8 w9 w10 w11 w12 w4 w5 w5 w4

m5: w5 w1 w2 w3 w4 w6 w7 w8 w9 w10 w11 w12 w5 w6 w6 w5

m6: w6 w2 w3 w4 w5 w1 w7 w8 w9 w10 w11 w12 w6 w1 w1 w6

m7: w12 w7 w8 w9 w10 w11 w1 w2 w3 w4 w5 w6 w12 w12 w7 w7

m8: w7 w8 w9 w10 w11 w12 w1 w2 w3 w4 w5 w6 w7 w7 w8 w8

m9: w8 w9 w10 w11 w12 w7 w1 w2 w3 w4 w5 w6 w8 w8 w9 w9

m10: w9 w10 w7 w8 w11 w12 w1 w2 w3 w4 w5 w6 w9 w9 w10 w10

m11: w10 w11 w7 w8 w9 w12 w1 w2 w3 w4 w5 w6 w10 w10 w11 w11

m12: w11 w12 w7 w8 w9 w10 w1 w2 w3 w4 w5 w6 w11 w11 w12 w12

w1: m6 m1 m2 m3 m4 m5 m7 m8 m9 m10 m11 m12 m1 m6 m6 m1

w2: m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m2 m1 m1 m2

w3: m2 m3 m4 m5 m6 m1 m7 m8 m9 m10 m11 m12 m3 m2 m2 m3

w4: m3 m4 m1 m2 m5 m6 m7 m8 m9 m10 m11 m12 m4 m3 m3 m4

w5: m4 m5 m1 m2 m3 m6 m7 m8 m9 m10 m11 m12 m5 m4 m4 m5

w6: m5 m6 m1 m2 m3 m4 m7 m8 m9 m10 m11 m12 m6 m5 m5 m6

w7: m7 m9 m10 m11 m12 m8 m1 m2 m3 m4 m5 m6 m8 m8 m7 m7

w8: m8 m7 m10 m11 m12 m9 m1 m2 m3 m4 m5 m6 m9 m9 m8 m8

w9: m9 m7 m8 m11 m12 m10 m1 m2 m3 m4 m5 m6 m10 m10 m9 m9

w10: m10 m7 m8 m9 m12 m11 m1 m2 m3 m4 m5 m6 m11 m11 m10 m10

w11: m11 m7 m8 m9 m10 m12 m1 m2 m3 m4 m5 m6 m12 m12 m11 m11

w12: m12 m8 m9 m10 m11 m7 m1 m2 m3 m4 m5 m6 m7 m7 m12 m12

r(M) 2 0 5 2
c(M) 63 84 60 39

Table 3.2: SM instance I0 with stable matchings M1, M2, M3 and M4.

table. Matching M2 is the only regret-equal stable matching in I0, and is therefore also
the unique regret-equal stable matching with minimum cost. Matching M4 is the unique
egalitarian stable matching, and since 84 = c(M2) > 2 ∗ c(M4) = 78, any theoretical bound
for the cost of a regret-equal stable matching with minimum cost must be more than twice
that of an egalitarian stable matching.

3.6 Algorithm to find a min-regret sum stable match-

ing

Algorithm MRS, which finds a min-regret sum stable matching, given an instance of SMI,
is presented as Algorithm 3.6. First, the man-optimal and woman-optimal stable matchings,
M0 and Mz, are found using the Man-oriented and Women-oriented Gale-Shapley Algo-

3.6. Algorithm to find a min-regret sum stable matching 49

rithms [19]. The best matching found so far, denoted Mopt is initialised to M0. We then
iterate over each possible man-degree a between dU(M0) and dU(Mz) inclusive, where an
improvement of Mopt, according to the regret sum, is still possible. As an example, suppose
Mopt has a regret sum of 5 with dU(Mopt) = 2 and dW (Mopt) = 3. Then, it is not worth iter-
ating over any man-degree greater than 3 since it will not be possible to improve on the regret
sum of 5 by doing so. For each iteration of the while loop, we truncate the men’s preference
lists at a and find the woman-optimal stable matching MT

z for this truncated instance. If the
regret sum of MT

z is smaller than that of Mopt, we update Mopt to MT
z . After all iterations

over possible men’s degrees are completed, Mopt is returned.

Algorithm 3.6 MRS(I), returns a min-regret sum stable matching for an instance I of SMI.
Require: An instance I of SMI.
Ensure: Return a min-regret sum stable matching Mopt.

1: M0 ←MGS(I) . M0 is the man-optimal stable matching found using the Man-oriented
Gale-Shapley Algorithm (MGS) [19].

2: Mz ←WGS(I) . Mz is the woman-optimal stable matching found using the
Woman-oriented Gale-Shapley Algorithm (WGS) [19].

3: Mopt ←M0

4: a← dU(M0)
5: while a ≤ dU(Mz) and a+ 1 < dU(Mopt) + dW (Mopt) do
6: IT ←RESP-Truncate(I, (a, n))
7: MT

z ←WGS(IT)
8: if dU(MT

z) + dW (MT
z) < dU(Mopt) + dW (Mopt) then

9: Mopt ←MT
z

10: end if
11: a← a+ 1
12: end while
13: return Mopt

Let ds denote the difference between the degree of men in the woman-optimal stable match-
ing Mz, and in the man-optimal stable matching M0, that is ds = dU(Mz) − dU(M0). In
Theorem 3.6.1, we show that Algorithm MRS produces a min-regret sum stable matching in
O(dsm) time.

Theorem 3.6.1. Let I be an instance of SMI. Algorithm MRS produces a min-regret sum

stable matching in O(dsm) time, where ds = dU(Mz)− dU(M0), m is the total length of all

preference lists, and M0 and Mz are the man-optimal and woman-optimal stable matchings

respectively.

Proof. We first redefine several definitions introduced at the beginning of Section 3.4.2. Let
IT be the truncated instance of I created on Line 6 where men are truncated at a and women
are truncated at n (effectively not truncated), and letMT

S be the set of stable matchings in

3.7. Experiments 50

IT . Finally, let

reduced(MS) = {M ∈MS : ∀(mi, wj) ∈M, rank(mi, wj) ≤ a ∧ rank(mi, wj) ≤ n}.

Then by Lemma 3.4.2, with b = n, we haveMT
S = reduced(MS).

Let M be a min-regret sum stable matching in I with dU(M) minimum among all min-
regret sum stable matchings. We show that it is not possible to miss a stable matching M ′

with d′(M ′) = d′(M), during the execution of Algorithm MRS. On Line 5 of Algorithm
3.6, we iterate over all possible men’s degrees that may correspond to a min-regret sum
stable matching, and will enter the while loop for degree value a = dU(M). Since a =

dU(M), we know that M ∈ reduced(MS) and so from above, M ∈ MT
S . We also know

by Lemma 3.4.2, that MT
z ∈ MS . Let R′ and RT

z be the set of rotations associated with
M and MT

z in I . On Line 7 of the algorithm we find the woman-optimal stable matching
MT

z inMT
S and so we must have rank(wj,M

T
z (wj)) ≤ rank(wj,M(wj)), for all women wj ,

since M ∈ MT
S . From this inequality, we know R′ ⊆ RT

z , and since dU(M) = a it must
be that dU(MT

z) = a. Additionally, this inequality implies dW (MT
z) ≤ dW (M). As M is

a min-regret sum stable matching, there cannot be a stable matching with man-degree a and
woman-degree < dW (M), but as dW (MT

z) ≤ dW (M), we must have dW (MT
z) = dW (M).

Hence, d′(MT
z) = d′(M). Note that due to the choice of M , with dU(M) minimum among

all min-regret sum stable matchings, it is not possible for Mopt to be updated to a min-regret
stable matching prior to this point in the algorithm. Therefore, Mopt is updated to MT

z on
Line 9. Additionally, as Mopt is now a min-regret stable matching it will not be possible for
it to be updated to another stable matching after this point, and so Mopt is returned on Line
13, as required.

Truncation of our instance requires two linear passes through preference lists of men and
women and is therefore anO(m) operation. As stated in a previous proof, in reality this could
be implemented with one linear time pass through each preference list. The man-optimal
and woman-optimal stable matchings can found in O(m) time both within and outwith the
while loop. Since the number of potential men’s degrees that we iterate over is bounded
by ds = dU(Mz) − dU(M0), we have an overall time complexity of O(dsm) for Algorithm
MRS.

3.7 Experiments

3.7.1 Methodology

Recall that an Enumeration Algorithm exists to find the set of all stable matchings of an
instance I of SMI in O(m + n|MS|) time [23]. For brevity, we denote this enumera-

3.7. Experiments 51

tion algorithm as Algorithm ENUM for the remainder of this chapter. Within this time
complexity, it is possible to output a regret-equal stable matching from this set of stable
matchings, by keeping track of the best stable matching found so far (according to the
regret-equality score) as they are created. We randomly generated instances of SM, in or-
der to compare the performance of Algorithms REDI, RESP and ENUM. Using output
from Algorithm ENUM, we also investigated the effect of varying instance sizes, for six
different types of optimal stable matchings (balanced, sex-equal, egalitarian, min-regret,
regret-equal, min-regret sum), and also outputs from Algorithms REDI and RESP, over
a range of measures (including balanced score, sex-equal score, cost, degree, regret-equality
score, regret sum). Tests were run over 19 different instance types with varying instance size
(n ∈ {10, 20, ..., 100, 200, ..., 1000}). Preliminary experimentation showed that, in general,
complete preference lists generated according to a uniform distribution produced a larger
number of stable matchings than using incomplete lists or linear distributions in which the
most popular man was p times more popular than the least popular man (similar for women).
Therefore since we wished to compare properties of different stable matchings, all instances
have complete, uniformly distributed preference lists. Experiments were run over 500 in-
stances of each instance type.

Each instance was run over the three algorithms described above with a timeout time of 1

hour for each algorithm. Experiments were conducted on the machine described in Chapter
1, running Ubuntu version 18.04. Instance generation, correctness and statistics summari-
sation programs, and plot and LATEX table generation were all written in Python and run
on Python version 3.6.1. All other code was written in Java and compiled using Java ver-
sion 1.8.0. Each instance was run on a single thread with 16 instances run in parallel using
GNU Parallel [72]. Serial Java garbage collection was used with a maximum heap size of
2GB distributed to each thread. Code and data repositories for these experiments can be
found at https://zenodo.org/record/3630383 and https://zenodo.org/
record/3630349 respectively.

Correctness tests were run in the following way. In addition to the above, a further two in-
stance types were generated where n ∈ {6, 8}, with 5000 instances for each type. Over all
instances of the 21 instance types, each matching output by an algorithm (one each for Algo-
rithms REDI and RESP, and multiple for Algorithm ENUM), was tested for (1) capacity:

each man (woman) may only be assigned to one woman (man) respectively; and (2) stability:

no blocking pair exists. Additionally, the regret-equal score of the stable matchings output by
each of the three algorithms were compared against each other (if they had not timed out) to
ensure they were identical values. These tests were were written in Java and compiled using
Java version 1.8.0. Finally, for all instances types where n ≤ 50, further correctness testing
was conducted on Algorithm ENUM to ensure that the correct number of stable matchings
was produced. This was done using an IP model built using the IP modelling framework

https://zenodo.org/record/3630383
https://zenodo.org/record/3630349
https://zenodo.org/record/3630349

3.7. Experiments 52

PuLP (version 1.6.9) [59] running CPLEX (version 12.8.0) [28] with Python version 2.7.15.
Similar to above, all instances were run on a single thread with 16 instances run in parallel
using GNU Parallel [72]. A timeout time of 30 minutes was applied to each instance for
the PuLP program, and all instances completed within the time limit. All correctness tests
passed successfully.

3.7.2 Experimental results summary

A summary of generated instance information and algorithm timeouts may be seen in Table
3.3. Instance types are labelled according to n, e.g., S100 is the instance type containing
instances where n = 100. Columns 3 and 4 show the mean number of stable matchings
|MS|av and mean number of rotations |R|av, respectively. Then, in columns 5, 6 and 7 we
give the number of instances that timed out (after 1 hour) for Algorithms REDI, RESP and
ENUM.

Figure 3.5 shows a comparison of the time taken to execute the three algorithms over increas-
ing values of n. Precise data for this plot can be seen in Table A.1 of Appendix A which gives
the mean, median, 5th percentile and 95th percentile durations for Algorithms REDI, RESP
and ENUM. In Figure 3.5, the median values of time taken for each algorithm are plotted
and a 90% confidence interval is displayed using the 5th and 95th percentile measurements.

Figure 3.6 shows comparisons of six different types of optimal stable matchings (balanced,
sex-equal, egalitarian, min-regret, regret-equal, min-regret sum), and outputs from Algo-
rithms REDI and RESP, over a range of measures (including balanced score, sex-equal
score, cost, degree, regret-equality score, regret sum), as n increases. Optimal stable match-
ing statistics involving a measure determined by cost (respectively degree) are given a green
(respectively blue) colour. For a particular fairness objective A and a particular fairness mea-
sure B, there may be a set of several stable matchings that are optimal with respect to A. In
this case we choose a matching from this set that has best possible measure with respect
to B. For example, if we are looking at the regret-equality score, for a particular instance,
we find a sex-equal stable matching that has smallest regret-equality score (over the set of
all sex-equal stable matchings) and use this value to plot the regret-equal score for this type
of optimal stable matching. This process is replicated for the other types of optimal stable
matching. In each case the mean measure value is plotted for the given type of optimal stable
matching. Data for these plots may be found in Tables A.2, A.3, A.4, A.5, A.6 and A.7 of
Appendix A.

Figure 3.7 (associated with Table A.8 in Appendix A) shows a bar chart of the mean number
of stable matchings occurring for the six different types of optimal stable matching described
above, with increasing n. Finally, Figure 3.8 (associated with Table A.9 in Appendix A)

3.7. Experiments 53

shows a bar chart of the mean number of stable matchings that satisfy different numbers of
optimal stable matching criteria, with increasing n. Both of these bar charts show a reduced
selection of n with n ∈ {100, 400, 700, 1000} (the tables show the full data).

The main results of these experiments are:

• Time taken: It is clear from Figure 3.5 that Algorithm REDI is the fastest algo-
rithm in practice among the three, taking approximately 2s to solve an instance of
size n = 1000 with very little variation. The Algorithm ENUM takes around 8s for
an instance of size n = 1000 with a far larger variation. Finally Algorithm RESP
is the slowest taking around 2000s to solve an instance of the same size. It may
seem surprising that the O(n4) Algorithm RESP appears to perform worse than the
O(m + n|MS|) Algorithm ENUM, which is exponential in the worst case. However,
Algorithm ENUM is polynomial in the number of stable matchings |MS| and since
|MS| tends to the order of n log n with larger n [44], this algorithm may behave more
like a lower order polynomial in the general case. We can also see from Table 3.3
that the poorer performance of Algorithm RESP results in some timeouts for instance
types with higher values of n. For all time-based calculations, instances that timed
out were deemed to have taken the 1 hour timeout time. This means that the 95th per-
centile values reported for Algorithm RESP are slightly underestimated for instance
types with n ≥ 600, however the 5th percentile and median values remain accurate.

• Balanced and sex-equal stable matchings: In all plots of Figure 3.6, balanced and sex-
equal stable matchings have remarkably similar mean scores over all instance sizes
and all measures. This may be due to the similar nature of these optimality measures,
where both measures involve a calculation over the cost of matchings (recall that the
balanced objective involves minimising the maximum of the total cost for the men and
the total cost for the women, whilst the sex-equal objective involves minimising the
absolute value of the difference between the total cost for the men and the total cost
for the women). This similarity was previously noted by Manlove [47, p. 110], who
references work undertaken by Eric McDermid to find an instance of SMI in which no
balanced stable matching is also a sex-equal stable matching.

• Sex-equal score: A wide variation in sex-equal score over the six optimal matchings
can be seen in Figure 3.6b (and Table A.3). Sex-equal and balanced stable matchings
are extremely closely aligned giving a mean sex-equal score of 265.0 and 284.0 re-
spectively for the instance type with n = 1000. Min-sum regret stable matchings, on
the other hand, performed the least well with a mean sex-equal score of 12400.0 for
the same instance type.

3.7. Experiments 54

• Regret-equality score: Similar to the previous point we see a wide variation in regret-
equality score over the six optimal stable matchings in Figure 3.6e (and Table A.6). For
the instance type with n = 1000, this ranges from a mean regret-equality score of 14.2

for the regret-equal stable matching to 84.6 for the minimum regret stable matching.
It is interesting to note that the type of optimal stable matching (out of the six optimal
stable matchings tested) whose regret-equality score tends to be furthest away from
that of a regret-equal stable matching is the min-regret sum stable matching. This may
be due to the fact that minimising the sum of two measures does not necessarily force
the two measures to be close together.

• Outputs from Algorithms REDI and RESP: Over all measures, outputs from Algo-
rithms REDI and RESP were remarkably similar and so in this regard, neither algo-
rithm is preferred over the other. Note that timeouts occurred for Algorithm RESP
for the five largest instance types, meaning that mean results are somewhat skewed for
this algorithm beyond n = 600 since the means are only computed over instances that
terminated before timeout. Figure 3.6e and Table A.6 even appear to show that output
from Algorithm RESP has a smaller regret-equality score than that of a regret-equal
stable matching, which of course is not the case. Clearly, for the instances that timed
out, the regret-equality score of a regret-equal stable matching must have been larger
in general than for instances that completed before the timeout. This is explained by
the fact that Algorithm RESP iterates through degree pairs in non-decreasing regret-
equality score order. Due to the wide variation of regret-equality scores among dif-
ferent types of optimal stable matchings (as described above) it is clear that no other
optimal stable matching is able to closely approximate a regret-equal stable matching,
which highlights the importance of Algorithms REDI and RESP that are designed
specifically for optimising this measure. Interestingly, Algorithms REDI and RESP
are also competitive in terms of balanced score, cost and degree. Indeed, we can see
from Tables A.2, A.4 and A.5, that Algorithm REDI approximates these types of op-
timal stable matchings at an average of 9.0%, 1.1% and 3.0% over their respective
optimal values, for instances with n = 1000. Over all instance sizes, these values are
within ranges [4.0%, 10.9%], [1.1%, 3.4%] and [1.3%, 3.7%], respectively. This gives
a good indication of the high-quality of output from this algorithm even on seemingly
unrelated measures. Algorithm RESP performed slightly better than Algorithm REDI
for instances with n = 1000 over the above measurements, however this is likely to be
due to the more complex cases (with larger measure values) timing out.

• Frequency of different types of optimal stable matchings: From Figure 3.7, we can
see a clear ordering for the three most frequent types of degree-based optimal stable
matching. From most frequent to least frequent they are minimum regret, regret-equal

3.7. Experiments 55

and min-regret sum stable matchings. The minimum-regret stable matching may be
most frequent because this optimality criterion is somewhat less constrained than the
other two, as it is based only on the worst performing agent. In contrast, the regret-
equal and min-regret sum stable matchings are based on the worst performing man
and worst performing woman. Additionally, cost-based optimal stable matchings are
likely to be more constrained than degree-based ones (due to the number of different
costs and degrees possible for stable matchings of any n), which may account for the
very low average number of stable matchings for these types.

• The number of optimality criteria that stable matchings satisfy: The bar chart in Fig-
ure 3.8 shows a clear pattern of fewer stable matchings satisfying higher numbers of
optimality criteria. For smaller instances there is a trend for this to level out some-
what, which can be seen more clearly for the instance types with lowest n in Table
A.9. Taken to extreme, if there is only one stable matching in an instance, it will nec-
essarily satisfy all optimality criteria. As n increases, so too does the number of stable
matchings. This increase in number of stable matchings has the effect of increasing
the number of possible values of any particular measure, such as cost, over the set of
all stable matchings. It is therefore less likely that any particular one stable matching
will obtain the optimal value associated with this measure and so, in turn, a particular
stable matching is likely to be optimal for fewer optimality criteria.

3.7. Experiments 56

Case n |MS|av |R|av
Timeout

REDI
Timeout

RESP
Timeout
ENUM

S10 10 3.0 1.8 0 0 0
S20 20 6.7 4.2 0 0 0
S30 30 10.3 6.3 0 0 0
S40 40 16.1 8.9 0 0 0
S50 50 21.0 11.2 0 0 0
S60 60 27.7 13.7 0 0 0
S70 70 33.1 15.8 0 0 0
S80 80 40.8 18.1 0 0 0
S90 90 48.0 20.4 0 0 0

S100 100 54.8 22.7 0 0 0
S200 200 139.2 42.4 0 0 0
S300 300 219.1 58.9 0 0 0
S400 400 348.4 76.2 0 0 0
S500 500 442.5 90.3 0 0 0
S600 600 546.2 105.7 0 1 0
S700 700 670.5 118.8 0 2 0
S800 800 815.2 132.5 0 41 0
S900 900 977.0 144.0 0 118 0

S1000 1000 1077.5 156.7 0 167 0

Table 3.3: General instance and algorithm timeout results.

0 200 400 600 800 1000
n

102

103

104

105

106

Du
ra

tio
n

(m
s)

Algorithm REDI
Algorithm RESP
Algorithm ENUM
Timeout

Figure 3.5: A log plot of the time taken to execute Algorithms REDI, RESP and ENUM,
where n is the number of men or women. A second order polynomial model has been
assumed for all best-fit lines.

3.7. Experiments 57

0 200 400 600 800 1000
n

0

5000

10000

15000

20000

25000

30000

35000

40000

Ba
la

nc
ed

 sc
or

e

Balanced
Sex-equal
Egalitarian
Minimum regret
Regret-equal
Min-regret sum
Algorithm REDI
Algorithm RESP

(a) Plot of balanced score.

0 200 400 600 800 1000
n

0

2000

4000

6000

8000

10000

12000

Se
x-

eq
ua

l s
co

re

Balanced
Sex-equal
Egalitarian
Minimum regret
Regret-equal
Min-regret sum
Algorithm REDI
Algorithm RESP

(b) Plot of sex-equal score.

0 200 400 600 800 1000
n

0

10000

20000

30000

40000

50000

60000

Eg
al

ita
ria

n
co

st

Balanced
Sex-equal
Egalitarian
Minimum regret
Regret-equal
Min-regret sum
Algorithm REDI
Algorithm RESP

(c) Plot of cost.

0 200 400 600 800 1000
n

0

50

100

150

200

250
De

gr
ee Balanced

Sex-equal
Egalitarian
Minimum regret
Regret-equal
Min-regret sum
Algorithm REDI
Algorithm RESP

(d) Plot of degree.

0 200 400 600 800 1000
n

0

10

20

30

40

50

60

70

80

Re
gr

et
-e

qu
al

 sc
or

e

Balanced
Sex-equal
Egalitarian
Minimum regret
Regret-equal
Min-regret sum
Algorithm REDI
Algorithm RESP

(e) Plot of regret-equality score.

0 200 400 600 800 1000
n

0

100

200

300

400

Su
m

 re
gr

et Balanced
Sex-equal
Egalitarian
Minimum regret
Regret-equal
Min-regret sum
Algorithm REDI
Algorithm RESP

(f) Plot of regret sum.

Figure 3.6: Plots of experiments to compare six different optimal stable matchings (bal-
anced, sex-equal, egalitarian, min-regret, regret-equal, min-regret sum), and outputs from
Algorithms REDI and RESP, over a range of measures (including balanced score, sex-
equal score, cost, degree, regret-equality score, regret sum), where n is the number of men
or women. A second order polynomial model has been assumed for all best-fit lines.

3.7. Experiments 58

Balanced Sex-equal Egalitarian Minimum
regret

Regret-
equal

Min-regret
sum

Type of optimal stable matching

100

101

102

M
ea

n
nu

m
be

r o
f s

ta
bl

e
m

at
ch

in
gs

S100
S400
S700
S1000

Figure 3.7: Bar chart of the mean number of stable matchings for different types of optimal
matchings, for n ∈ {100, 400, 700, 1000}.

0 1 2 3 4 5 6
Number of optimal matching criteria satisfied

10 1

100

101

102

103

M
ea

n
nu

m
be

r o
f s

ta
bl

e
m

at
ch

in
gs

S100
S400
S700
S1000

Figure 3.8: Bar chart of the mean number of stable matchings which satisfy different num-
bers of optimal stable matching criteria, for n ∈ {100, 400, 700, 1000}.

3.8. Conclusions and future work 59

3.8 Conclusions and future work

We introduced two new notions of fair stable matchings for SMI, namely, the regret-equal
stable matching and the min-regret sum stable matching. We presented algorithms that are
able to compute matchings of these types in polynomial time: O(d0nm) time for the regret-
equal stable matching, where d0 = |dU(M0)−dW (M0)|; andO(dsm) time for the min-regret
sum stable matching, where ds = dU(Mz) − dU(M0). It remains open as to whether these
time complexities can be improved.

We now define new variants of SMI and HR in which groups are formed on one side of the
market, and look at open problems relating to stable matchings that are in some sense fair
among these groups.

Let the Stable Marriage problem with Incomplete lists and Grouped Women (SMI-GW) be
the extension of SMI in which the set of women is partitioned into two disjoint sets W1

and W2. This scenario may arise, for example, in a practical situation where each group of
women is a group of workers with particular characteristics and each man is a job within
a company. The aim then is to distribute jobs fairly among different groups of workers.
With respect to a stable matching M , let dW1(M) and dW2(M) denote the rank of the worst-
ranked woman in W1 and W2 respectively, and let the regret-equality score be given by
r′(M) = |dW1(M) − dW2(M)|. Finally, let a stable matching M in SMI-GW be regret-

equal if r′(M) is minimum among all stable matchings inMS . In the worker-job scenario,
a regret-equal stable matching would aim to give the worst-off worker from one group a
job that they rank as close as possible to the worst-off worker from the other group. Let
dti = dWi

(M0) − dWi
(Mz) for i ∈ {1, 2}. A simple O(dt1dt2m) algorithm exists to find

the regret-equal stable matching in SMI-GW and executes as follows. Calculate the man-
optimal stable matching M0 and the woman-optimal stable matching Mz using the Man-
oriented and Woman-oriented Gale-Shapley Algorithms [19] respectively. Iterate over all
possible degree pairs ({dW1(Mz), ..., dW1(M0)} × {dW2(Mz), ..., dW2(M0)}) of groups W1

and W2 in order of non-decreasing regret-equality score. For degree pair (a, b), eliminate
all rotations from M0 containing a woman from group W1 with rank greater than a (if any),
and all rotations containing a woman from group W2 with rank greater than b (if any). If the
resultant matching M has dW1(M) = a and dW2(M) = b then return M as optimal.

Let the Hospitals/Residents problem with Grouped Residents (HR-GR) be the extension of
HR in which each resident belongs to one of two groups R1 and R2. An extended concept of
a rotation (defined in SMI), known as a meta-rotation [7], exists in instances of HR. As with
a rotation in the SMI case, informally, a meta-rotation is a list of resident-hospital pairs, such
that when permuted on a stable matching (on which they are exposed), give rise to another
stable matching. As in the SMI case, there is a one-to-one correspondence between the set of
stable matchings and the closed subsets of the meta-rotation poset [7]. We may then use a

3.8. Conclusions and future work 60

similar algorithm to that described above, to find a regret-equal stable matching M such that
r′′(M) = |dR1(M) − dR2(M)| is minimum over all stable matchings. Within the algorithm
above, residents take the place of women and hospitals take the place of men. It is easy to
see that this algorithm may be extended to instances with any constant number of groups and
still be run in polynomial time.

It is an open problem as to whether a stable matching, analogous to a sex-equal stable match-
ing in SMI, may be found in polynomial time for either SMI-GW or HR-GR. Other fairness
criteria in Table 3.1 are trivial for the HR-GR case since a resident-optimal stable match-
ing would naturally satisfy analogous balanced, min-regret, egalitarian and min-regret sum
criteria.

In Section 2.2.2.2 we saw that a balanced stable matching may be approximated within a
factor of 2 − 1

l
, where l is the length of the longest preference list [47, p. 110], and that

it is possible to find a near sex-equal stable matching in polynomial time [35]. A further
consideration is to look at whether one type of optimal stable matching is able to closely
approximate another. In Section 3.5 we showed that a minimum cost regret-equal stable
matching does not in general approximate an egalitarian stable matching within a factor of 2.
Of the six types of optimal stable matching studied, two are NP-hard to find (balanced and
sex-equal stable matchings) and so it is reasonable to ask whether it is possible to approxi-
mate either of these stable matchings using the other types of optimal stable matchings that
can be found in polynomial time. It is clear from Figure 3.6b that no type of optimal stable
matching (apart from the balanced stable matching) is in general able to closely approximate
a sex-equal stable matching. Our empirical work showed that, in practice, the types of op-
timal stable matching that can be found in polynomial time were able to reasonably closely
approximate a balanced stable matching. The best current bound on the performance guar-
antee of any approximation algorithm for the problem of finding a balanced stable matching
is 2. It remains open as to whether any of the types of polynomial-time computable optimal
stable matchings considered in this chapter can approximate a balanced stable matching to
within a factor less than 2 in the worst case.

61

Chapter 4

Profile-based stable matchings in SMI

4.1 Introduction

4.1.1 Background

In this chapter we continue our study of fairness in SMI by examining the problem of finding
profile-based optimal stable matchings. Both SMI and profile-based optimality were intro-
duced in Section 2.2.2. In particular we study the problems of finding a rank-maximal stable
matching and a generous stable matching in SMI. Profile-based optimality such as rank-
maximality or the generous criteria provide guarantees that do not exist with other optimality
criteria giving a distinct advantage to these approaches in certain scenarios.

In addition to investigating profile-based optimality in SMI, we also examine the complexity
of the problem of finding profile-based optimal stable matchings in SR (the generalisation of
SMI introduced in Section 2.3).

Recall that in an instance of SMI, n is the number of men or women, and m is the total
length of all preference lists. Irving et al. [32] describe the use of weights that are exponen-
tial in n (henceforth exponential weights) in order to find a rank-maximal stable matching
using a maximum weight approach. This requires an additional factor of O(n) time com-
plexity to take into account calculations over exponential weights, giving an overall time
complexity of O(nm2 log n) 1. Irving et al.’s approach (described in more detail in Section
4.3) requires a Max Flow algorithm to be used. Irving et al. [32] stated that the strongly
polynomial O(m2 log n) Sleator-Tarjan algorithm [71] was the best option (at the time of
writing). The Sleator-Tarjan algorithm [71] is an adapted version of Dinic’s algorithm [11]
and finds a maximum flow in a network in O(|V ||E| log |V |) time. Since |V | ≤ m, |E| ≤ m

1Irving et al. [32] actually state a time complexity ofO(nm2 log n log n), however, we believe that this time
complexity bound is somewhat pessimistic and that a bound of O(nm2 log n) applies to this approach.

4.1. Introduction 62

and O(logm) is equivalent to O(log n) [25], this translates to O(m2 log n) for the maximum
weight stable matching problem and an overall time complexity of O(nm2 log n) for the
rank-maximal stable matching problem. However in 2013 Orlin [64] described an improved
strongly polynomial Max Flow algorithm with an O(|V ||E|) (translating to O(m2)) time
complexity, giving a total overall time complexity for finding a rank-maximal stable match-
ing of O(nm2). Feder’s weighted SAT approach [15] has an overall O(n0.5m1.5) time com-
plexity for finding a rank-maximal stable matching. Neither Irving et al. [32] nor Feder [15]
considered generous stable matchings, however, a generous stable matching may be found
in a similar way to a rank-maximal stable matching with the use of exponential weights.

4.1.2 Motivation

For the rank-maximal stable matching problem, Irving et al. [32] suggest a weight of nn−i

for each agent assigned to their ith choice and a similar approach can be taken to find a
generous stable matching as we demonstrate later in this chapter. In both the rank-maximal
and generous cases, the use of exponential weights introduces the possibility of overflow
and accuracy errors upon implementation. This may occur as a consequence of limitations
of data types: in Java for example, the int and long primitive types restrict the number of
integers that can be represented, and the double primitive type may introduce inaccuracies
when the number of significant figures is greater than 15. Using a weight of nn−i for each
agent assigned to their ith choice as above, it may be that we need to distribute n capacities
of size nn−1 across the network [32]. As a theoretical example the long data type has a
maximum possible value of 263 − 1 < 1019 [63]. Since 1615 < 1019 < 1716, when we are
dealing with flows or capacities of order nn−1, the largest n possible without risking errors
is 16. However, alternative data structures such as Java’s BigInteger do allow an arbitrary
limit on integer size [62], by storing each number as an array of ints to the base 231 − 1 (the
maximum int value), meaning we are more likely to be dependent on the size of computer
memory than any data type limits.

When looking for a rank-maximal or generous stable matching, we describe an alternative
approach to finding a maximum flow through a network that does not require exponential
weights. This approach is based on using polynomially-bounded weight vectors (henceforth
vector-based weights) for edge capacities rather than exponential weights. On the surface,
performing operations over vector-based weights rather than over equivalent exponential
weights, would appear not to improve the time or space complexity of the algorithm, since an
exponential weight may naturally be stored as an equivalent array of integers in memory, as
in the BigInteger case above. However, vector-based weights allow us to explore vector com-
pression that is unavailable in the exponential case. One form of lossless vector compression
saves the index and value of each non-zero vector element. This type of vector compression

4.1. Introduction 63

is used in our experiments in Section 4.7 to show that for randomly-generated instances of
size n = 1000, we are able to store a network with vector-based weights using approxi-
mately 10 times less space than one stored with the equivalent exponential weights. Indeed
extrapolating to n = 100, 000 we achieve an approximate factor of 100 improvement using
vector-based weights, with the space required to store a network using exponential weights
nearing 1GB. We also show that for a specific instance of size n = 100, 000, the space re-
quired to store exponential weights of a network was over 10GB, whereas the vector-based
weights were over 100, 000 times less costly at 0.64MB. Combining these space requirement
calculations with the fact that the time complexity of Irving et al.’s [32] O(nm2 log n) al-
gorithm to find a rank-maximal stable matching is dominated substantially by the maximum
flow algorithm (no other part taking more thanO(m) time), it is arguably important to ensure
that the network is as small as possible and fits comfortably in RAM.

4.1.3 Contribution

In this chapter we present an O(nm2 log n) algorithm to find a rank-maximal stable match-
ing in an instance of SMI using a vector-based weight approach rather than using exponential
weights. We also show that a similar process can be used to find a generous stable matching
in O(min{m,nd}2d log n) time, where d is the degree of a minimum regret stable matching.
Finally, we show that the problems of finding rank-maximal and generous stable matchings
in SR are NP-hard. In addition to theoretical contributions we also run experiments using
randomly-generated SM instances. In these experiments we compare rank-maximal and gen-
erous stable matchings over a range of measures (cost, sex-equal score, degree, number of
agents obtaining their first choice and number of agents who obtain a partner in the lower
a% of their preference list). An example of this final measure is as follows. If n = 200 and
a = 50 then we record the number of agents who obtain a partner between their 101st and
200th choice inclusive. We additionally compare these profile-based optimal stable match-
ings with median stable matchings (introduced in Section 2.2.2.2). The median criterion
is somewhat unique in that its definition is not based on cost, degree or profile. We were
interested in determining whether, in practice, a median stable matching more closely ap-
proximates a rank-maximal or a generous stable matching. In these experiments, we find
that a generous stable matching typically outperforms both a rank-maximal and a median
stable matching when considering cost and sex-equal score measures, and that a median
stable matching more closely approximates a generous stable matching in practice.

4.2. Preliminary definitions and results 64

4.1.4 Structure of the chapter

Section 4.2 introduces preliminary definitions and results used later in this chapter. Sec-
tion 4.3 gives a description of Irving et al.’s [32] method for finding a rank-maximal stable
matching using exponential weights. Sections 4.4 and 4.5 describe the new approach to find
a rank-maximal stable matching and a generous stable matching respectively, without the use
of exponential weights. Complexity results for rank-maximal and generous stable matchings
in SR are presented in Section 4.6. Our experimental evaluation is presented in Section 4.7,
whilst future work is discussed in Section 4.8.

4.2 Preliminary definitions and results

In Section 2.2.2.2 we defined the profile of a stable matching. We now generalise this to
define a profile as a finite vector of integers (positive or negative). Addition over profiles
may be defined in the following way. Let p = 〈p1, p2, ..., pn〉 and p′ = 〈p′1, p′2, ..., p′n〉 be
profiles of length n. Then the addition of p′ to p is taken pointwise over elements from 1...n.
That is, p + p′ = 〈p1 + p′1, p2 + p′2, ..., pn + p′n〉. We define p = p′ if pi = p′i for 1 ≤ i ≤ n.
Now suppose p 6= p′. Let k be the first point at which these profiles differ, that is, suppose
pk 6= p′k and pi = p′i for 1 ≤ i < k. Then we define p ≺ p′ if pk < p′k. We say p � p′

if either pk < p′k or p = p′. Finally, we define a profile p as maximum (minimum) among a
set of profiles P if for any other profile p′ ∈ P , p � p′ (p � p′). It is trivial to show that
an addition or comparison of two profiles would take O(n) time in the worst case (since the
length of any profile is bounded by n). Let p′′ = 〈p1, p2, ..., pi, 0, ..., 0〉 be a profile, where
i ≤ n. Then for ease of description we may shorten this profile to p′′ = 〈p1, p2, ..., pi〉.

As in the previous chapter, we also use the notation and terminology associated with the
structure of stable matchings, first introduced in Section 2.2.2.3. We extend this, by defining
the profile of a rotation as follows. Suppose we have a rotation ρ that, when eliminated, takes
us from stable matching M to stable matching M ′, where M and M ′ have profiles p(M) =

〈p1, p2, ..., pn〉 and p(M ′) = 〈p′1, p′2, ..., p′n〉 respectively. Then the profile of ρ is defined as
the net change in profile between M and M ′, that is, p(ρ) = 〈p′1 − p1, p′2 − p2, ..., p′n − pn〉.
Hence, p(M ′) = p(M) + p(ρ). It is easy to see that a particular rotation will give the same
net change in profile regardless of which stable matching it is eliminated from. For a set of
rotationsR = {ρ1, ρ2, ..., ρr}, we define the profile ofR as p(R) = p(ρ1)+p(ρ2)+...+p(ρr).

We now present several definitions and results regarding the flow over a network.

Let N = (V,E) be a network with source vertex s and sink vertex t. We define the flow

over a vertex or edge of N as the transmission of a positive (or zero) number of units such
that the flow entering the vertex or edge is equal to the flow leaving it and the value of the

4.2. Preliminary definitions and results 65

flow does not exceed an edge’s capacity. The exceptions are the source vertex s which has
no flow entering it, and the sink vertex t which has no flow leaving it. The flow f in N is
then the sum of all flows leaving s. Finally, a maximum flow is a flow through the network
such that f is maximised. An s-t cut of N , denoted cT , is a set of edges (or ‘cut’ of edges),
which if removed, would leave no directed path from s to t. The capacity of a cut, c(cT), is
the sum of capacities over the removed edges. A minimum s-t cut is an s-t cut such that the
c(cT) is minimised.

We now state the Max Flow-Min Cut theorem.

Theorem 4.2.1 (Max Flow-Min Cut [17]). The value of a maximum flow through a network

N is equal to the capacity of a minimum cut of N .

By Theorem 4.2.1 we need only find a maximum flow through N in order to find a minimum
cut in N .

An augmenting path P is a path inN from the source vertex s to the sink vertex t comprising
edges of N , but not necessarily in the same direction, such that for each edge (u, v) ∈ P ,
one of the following must be true:

1. (u, v) ∈ E and f(u, v) < c(u, v), or;

2. (v, u) ∈ E and f(v, u) > 0.

In order to search for augmenting paths a new network known as the residual graph may be
constructed. Given a network N and a flow f in N , the residual graph relative to N and f ,
denoted Nres(I, f), is defined as follows. The vertex set of Nres(I, f) is equal to the vertex
set of N . An edge (u, v), known as a forward edge, is added to Nres(I, f) with capacity
c(u, v) − f(u, v) if (u, v) ∈ E and f(u, v) < c(u, v). Similarly an edge (u, v), known as a
backwards edge, is added to Nres(I, f) with capacity f(v, u) if (v, u) ∈ E and f(v, u) > 0.
Using a breadth-first search in Nres(I, f) we may find an augmenting path or determine that
none exists in O(|E|) time. Once an augmenting path P is found we augment N in the
following way:

• The residual capacity ca is the minimum of the capacities of the edges in P inNres(I, f);

• For each edge (u, v) ∈ P , if (u, v) is a forwards edge, the flow through (u, v) is in-
creased by ca, whilst if (u, v) is a backwards edge, the flow through (v, u) is decreased
by ca.

Ford and Fulkerson [17] showed that if no augmenting path in N can be found then the flow
f in N is maximum. For the remainder of this chapter, maximum flows are found using the

4.3. Finding a rank-maximal stable matching using exponential weights 66

Sleator-Tarjan algorithm [71], which terminates when no augmenting path can be found in
N . In Chapter 6, we revisit maximum flows using the Ford-Fulkerson Algorithm [17], which
also terminates when no augmenting path can be found.

4.3 Finding a rank-maximal stable matching using ex-

ponential weights

In this section we will describe how Irving et al.’s [32] maximum weight stable matching
algorithm works and how it can be used to find a rank-maximal stable matching using expo-
nential weights.

4.3.1 Exponential weight network

Irving et al.’s [32] method for finding a maximum weight stable matching involves finding
a maximum weight closed subset of the rotation poset. In order to find a maximum weight
closed subset of the rotation poset, a network is built and a maximum flow is found over this
network.

The rotation digraph is converted to a network Rn(I) as follows. First we add two extra
vertices; a source vertex s and a sink vertex t. An edge of capacity ∞ replaces each orig-
inal edge in the digraph. Since we are finding a rank-maximal stable matching, capacities
on other edges of Rn(I) are calculated by converting each profile of a rotation to a single
exponential weight. We decide on a weight function of (2n+ 1)n−i for each person assigned
to their ith choice. From this point onwards we refer to the use of this weight function as the
high-weight scenario, and denote it as w.

Definition 4.3.1. Given a profile p = 〈p1, p2, ..., pa〉 such that |p1| + |p2| + ... + |pa| ≤ 2n

and 1 ≤ a ≤ n, define the high-weight function w as,

w(p) = p1(2n+ 1)n−1 + p2(2n+ 1)n−2 + ...+ pa(2n+ 1)n−a.

Lemma 4.3.3 shows that when the above function w is used, a matching of maximum weight
will be a rank-maximal matching.

Proposition 4.3.2. Let p = 〈p1, p2, ..., pn〉 and p′ = 〈p′1, p′2, ..., p′n〉 be profiles such that

|p1| + |p2| + ... + |pn| ≤ 2n and |p′1| + |p′2| + ... + |p′n| ≤ 2n. Let wi(p) = pi(2n + 1)n−i

denote the ith term of w(p) and let w+
i (p) =

∑n
j=i pj(2n + 1)n−j denote the sum of w(p′)

terms for all j such that i ≤ j ≤ n. If pi > p′i, then wi(p) > w+
i (p′). Additionally, if i is the

first point at which p and p′ differ, then w(p) > w(p′).

4.3. Finding a rank-maximal stable matching using exponential weights 67

Proof. Assume pi > p′i. Then pi must be at least 1 larger than p′i since each profile element
is an integer by definition. A value of 1 for pi will contribute (2n + 1)n−i to wi(p) and so it
follows that wi(p) ≥ wi(p

′) + (2n+ 1)n−i.

Since (2n + 1)n−k decreases as k increases and |p′1| + |p′2| + ... + |p′n| ≤ 2n, the maximum
weight contribution that p′i+1, p

′
i+2, ..., p

′
n can make to w+

i (p′) is when p′i+1 = 2n.

Through the following series of inequalities,

w+
i (p′) ≤ wi(p

′) + 2n(2n+ 1)n−(i+1)

≤ wi(p)− (2n+ 1)n−i +
2n

2n+ 1
(2n+ 1)n−i

≤ wi(p) +

(
2n

2n+ 1
− 1

)
(2n+ 1)n−i

< wi(p)

(4.1)

it follows that wi(p) > w+
i (p′) as required. If i is the first point at which p and p′ differ then

it follows that w(p) > w(p′).

Lemma 4.3.3. Let I be an instance of SMI and let M be a stable matching in I . If w(p(M))

is maximum amongst all stable matchings of I , where p(M) is the profile of M , then M is a

rank-maximal stable matching.

Proof. Suppose w(p(M)) is maximum amongst all stable matchings of I . Now, assume for
contradiction that M is not rank-maximal. Then, there exists some stable matching M ′ in
I such that M ′ lexicographically larger than M . Let i be the first point at which p(M) =

〈p1, p2, ..., pn〉 and p(M ′) = 〈p′1, p′2, ..., p′n〉 differ. Since M ′ is lexicographically larger than
M we know that p′i > pi and by Proposition 4.3.2 it follows that w(p(M ′)) > w(p(M)).

But this contradicts the fact that w(p(M)) is maximum over all stable matchings of I . There-
fore our assumption that M is not rank-maximal is false, as required.

We now continue describing Irving et al.’s technique for finding a maximum weight closed
subset of the rotation poset. The rotations are divided into positive and negative vertices as
follows. A rotation ρ is positive if w(p(ρ)) > 0 and negative if w(p(ρ)) < 0. A directed edge
is added from the source to each negative vertex and is given a capacity equal to |w(p(ρ))|. A
directed edge is also added between each positive vertex and t with capacity w(p(ρ)). Recall
the example SMI instance I0 in Figure 2.1 of Section 2.2.2 with associated rotation poset
and rotation digraph shown in Figure 2.3. The high-weight network of instance I0 is denoted
Rn(I0) and is shown in Figure 4.1. In this figure, each edge e has a pair of associated integers
e1/e2 where e1 is the flow over e and e2 is the capacity of e.

4.3. Finding a rank-maximal stable matching using exponential weights 68

ρ0

ρ1

ρ2

ρ3

ρ4

s t
∞

∞

∞

∞

∞

∞ 0/
1336336

795036688/
819168496

362063824/

362063824

795036688/

795036688

362063824/
408840208

Figure 4.1: The high-weight network Rn(I0).

4.3.2 Maximum weight closed subset of Rp(I)

We wish to find a minimum cut in Rn(I) as this will allow us to calculate the maximum
weight closed subset of Rp(I). For future reference, we denote by Rres(I, f) the residual
graph of Rn(I). As described in Section 4.2 we need only find a maximum flow through
Rn(I) in order to find a minimum cut in Rn(I). Irving et al. [32] used the Sleator-Tarjan
algorithm [71] to find a maximum flow. This algorithm completes when no augmenting path
exists in Rn(I) with respect to the final flow.

In Figure 4.1 we show the high-weight network Rn(I0) with a maximum flow. There is one
minimum cut, cT = {(s, ρ0), (ρ4, t)}. Note that cT is a cut since removing these edges leaves
no path from s to t. By Theorem 4.2.1, it is also a minimum cut since the capacity of cT
(1157100512) is equal to the value of a maximum flow. For this cut cT we list every rotation
ρ such that (ρ, t) is an edge in Rn(I) and (ρ, t) /∈ cT . Then a maximum weight closed subset
of the rotation poset is given by this set of rotations and their predecessors. cT has associated
closed subset of {ρ0, ρ1, ρ2} which is precisely a maximum weight closed subset of Rp(I0).
The man-optimal stable matching of I0 is

M = {(m1, w5), (m2, w3), (m3, w8), (m4, w6), (m5, w7), (m6, w1), (m7, w2), (m8, w4)}.

By eliminating rotations {ρ0, ρ1, ρ2} from the man-optimal stable matching, we find the
rank-maximal stable matching

M ′ = {(m1, w3), (m2, w6), (m3, w1), (m4, w8), (m5, w7), (m6, w5), (m7, w2), (m8, w4)}.

The following Theorem summarises the work in this section.

Theorem 4.3.4 ([32]). Let I be an instance of SMI. A rank-maximal stable matching M of I

can be found in O(nm2 log n) time using weights that are exponential in n.

An alternative to high-weight values when looking for a rank-maximal stable matching, is

4.4. Finding a rank-maximal stable matching using polynomially-bounded weight
vectors 69

to use a new approach, involving polynomially-bounded weight vectors, to find a maximum
weight closed subset of rotations. This is the focus of the rest of this chapter.

4.4 Finding a rank-maximal stable matching using

polynomially-bounded weight vectors

4.4.1 Strategy

Following a similar strategy to Irving et al. [32], we aim to show that we can return a rank-
maximal stable matching in O(nm2 log n) time without the use of exponential weights. The
process we follow is described in the steps below.

1. Calculate man-optimal and woman-optimal stable matchings using the Extended Gale-
Shapley Algorithm – O(m) time;

2. Find all rotations using the minimal differences algorithm – O(m) time;

3. Build the rotation digraph and network – O(m) time;

4. Find a minimum cut of the network in O(nm2 log n) time without reverting to high
weights;

5. Use this cut to find a maximum profile closed subset S of the rotation poset – O(m)

time;

6. Eliminate the rotations of S from the man-optimal matching to find the rank-maximal
stable matching.

In the next section we discuss required adaptions to the high-weight procedure.

4.4.2 Vb-networks and vb-flows

In this section we look at steps in the strategy to find a rank-maximal stable matching without
the use of exponential weights (Section 4.4.1) which either require adaptations or further
explanation.

In Step 6 of our strategy we eliminate the rotations of a maximum profile closed subset of
the rotation poset from the man-optimal stable matching. We now present Lemma 4.4.1, an
analogue of [25, Corollary 3.6.1], which shows that eliminating a maximum profile closed
subset of the rotation poset from the man-optimal stable matching results in a rank-maximal
stable matching.

4.4. Finding a rank-maximal stable matching using polynomially-bounded weight
vectors 70

Lemma 4.4.1. Let I be an instance of SMI and let M0 be the man-optimal stable matching

in I . A rank-maximal stable matching M may be obtained by eliminating a maximum profile

closed subset S of the rotation poset from M0.

Proof. Let Rp(I) be the rotation poset of I . By Gusfield and Irving [25, Theorem 2.5.7],
there is a 1-1 correspondence between closed subsets of Rp(I) and the stable matchings of
I . Let S be a maximum profile closed subset of the rotation poset Rp(I) and let M be the
unique corresponding stable matching. Then, p(M) = p(M0) +

∑
ρi∈S p(ρi). Suppose M

is not rank-maximal. Then there is a stable matching M ′ such that p(M ′) � p(M). As
above, M ′ corresponds to a unique closed subset S ′ of the rotation poset. Also p(M ′) =

p(M0) +
∑

ρi∈S′ p(ρi). But p(M ′) � p(M) and so S cannot be a maximum profile closed
subset of Rp(I), a contradiction.

Steps 3 and 4 of our strategy are the only places where we are required to check that it is
possible to directly substitute an operation involving large weights taking O(n) time with a
comparable profile operation taking O(n) time.

The first deviation from Gusfield and Irving’s method (described in Section 4.1) is in the
creation of a vector-based network (abbreviated to vb-network). For ease of description we
denote this new vb-network as R′n(I) to distinguish it from the high-weight version Rn(I).
We now define a vb-capacity in R′n(I) which is of similar notation to that of a profile.

Definition 4.4.2. In a vb-network R′n(I), the vector-based capacity (vb-capacity) of an edge

e is a vector c(e) = 〈c1, c2, ..., cn〉, where n is the number of men or women in I and ci ≥ 0

for 1 ≤ i ≤ n.

As before we add a source s and sink t vertex to the rotation digraph. We replace each
original digraph edge with an edge with vb-capacity 〈∞,∞, ...,∞〉 (∞ repeated n times).
For convenience these edges are marked with ‘∞’ in vb-network diagrams. The definition
of a positive and negative rotation is also amended. Let ρ have profile p(ρ) = 〈p1, p2, ..., pn〉.
Let pk be the first non-zero profile element where 1 ≤ k ≤ n. We now define a positive
rotation ρ as a rotation where pk > 0, and a negative rotation is one where pk < 0. Define
the absolute value operation, denoted |p(ρ)|, as follows. If pk > 0, then leave all elements
unchanged. If pk < 0, then reverse the sign of all non-zero profile elements. Figure 4.2
shows the profile and absolute profile for each rotation of I0. Then we add a directed edge
to the vb-network from s to each negative rotation vertex ρ with a vb-capacity of |p(ρ)| and
a directed edge from each positive rotation vertex ρ to t with a vb-capacity of p(ρ).

Let e = (u, v) be an edge in R′n(I) with capacity c(e). We define a vb-flow over e, denoted
f(e), in the following way.

4.4. Finding a rank-maximal stable matching using polynomially-bounded weight
vectors 71

ρ0: (m1, w5) (m3, w8)
ρ1: (m1, w8) (m2, w3) (m4, w6)
ρ2: (m3, w5) (m6, w1)
ρ3: (m7, w2) (m5, w7)
ρ4: (m3, w1) (m5, w2)

(a) Rotations for instance I0.

p(ρ0) = 〈−2, 1, 1, 1, 0,−1〉
p(ρ1) = 〈2, 0,−1,−1,−1,−2, 1, 2〉
p(ρ2) = 〈0, 0, 1,−1〉
p(ρ3) = 〈−1, 0, 1, 1,−1〉
p(ρ4) = 〈1,−2, 0, 0, 0, 1〉

(b) Rotation profiles.

|p(ρ0)| = 〈2,−1,−1,−1, 0, 1〉
|p(ρ1)| = 〈2, 0,−1,−1,−1,−2, 1, 2〉
|p(ρ2)| = 〈0, 0, 1,−1〉
|p(ρ3)| = 〈1, 0− 1,−1, 1〉
|p(ρ4)| = 〈1,−2, 0, 0, 0, 1〉

(c) Absolute rotation profiles.

Figure 4.2: The profile and absolute profile for rotations of I0.

Definition 4.4.3. In a vb-network R′n(I), the vector-based flow (vb-flow) over an edge e is a

vector f(e) = 〈f1, f2, ..., fn〉, where
∑n

i=1 |fi| ≤ 2n.

By Definition 4.4.3, the sum of the absolute values of the elements of a flow over an edge
cannot exceed 2n, which implies that each flow element fi satisfies −2n ≤ fi ≤ 2n. We
will use this fact in the next section when proving the equivalence of the vector-based and
high-weight approaches. We also remark that it is possible for fi < 0 for some i (2 ≤ i ≤ n)

and for f(e) to be a positive vb-flow. For example 〈0, 0, 0〉 ≺ 〈0, 1,−10〉, and hence we are
not bounding each individual element of a vb-flow over an edge by a minimum of zero.

We may now define a vb-flow over R′n(I) as follows.

Definition 4.4.4. In a vb-network R′n(I) = (V,E), a vector-based flow (vb-flow) is a func-

tion f : E → Rn such that 2,

i) (vb-capacity) f(e) � 0 and f(e) � c(e) for all e ∈ E;

ii) (vb-conservation)
∑

(u,v)∈E
f(u, v) =

∑
(v,w)∈E

f(v, w) for all v ∈ V \{s, t}.

Vb-flows are non-negative by the vb-capacity constraint.

In addition we define the following notation and terminology for vb-flows. Let f and be
a vb-flow in R′n(I) = (V,E). Define val(f) =

∑
{f(s, v) : v ∈ V ∧ (s, v) ∈ E}. We

2Sleator and Tarjan’s algorithm [71] (used later in this section) may be used in a way that assumes integer
value flows, and hence for the rest of this chapter we assume vb-flow value elements will only ever be integers.
That is, a vb-flow is a function f : E → Nn.

4.4. Finding a rank-maximal stable matching using polynomially-bounded weight
vectors 72

ρ0

ρ1

ρ2

ρ3

ρ4

s t
∞

∞

∞

∞

∞

∞ 〈0, 0, 1,−1〉

〈1,−2, 0,
0, 0,

1〉

〈2,−
1,−1,−1, 0,

1〉

〈1, 0− 1,−1, 1〉

〈2, 0,−1,−1,−1,−2, 1, 2〉

(a) Vector-based network R′n(I0).

ρ0

ρ1

ρ2

ρ3

ρ4

s t
∞

∞

∞

∞

∞

∞
1336336

819168496

362063824

795036688

408840208

(b) High-weight network Rn(I0).

Figure 4.3: Vector-based network R′n(I0) and network Rn(I0) with both vector-based and
high-weight capacities respectively.

define a maximum vb-flow f to be a vb-flow such that there is no other vb-flow f ′ where
val(f ′) > val(f).

The vb-network R′n(I0) and the corresponding high-weight version Rn(I0) are shown in
Figure 4.3. In order to translate vector-based values (vb-values) to high-weight values we
use the same formula as for profiles. That is, (2n + 1)n−i for each man or woman assigned
to their ith choice [32]. As an example, the vb-value 〈0, 0, 1,−1〉 for rotation ρ2 translates to
a high-weight value of 0 ∗ 177 + 0 ∗ 176 + 1 ∗ 175 − 1 ∗ 174 = 1336336.

An augmenting path in R′n(I) has an analogous definition to the standard definition of an
augmenting path. The vector-based residual network (vb-residual network) R′res(I,f) of
R′n(I) with vb-capacities is created in the same way as the residual network Rres(I, f) of
Rn(I). A cut in R′n(I), denoted c′T , is defined in a similar way to a cut in Rn(I) and has
capacity c(c′T) =

∑
c(e) where e is an edge in c′T . Where the flow in Rn(I) is equivalent

to the vb-flow in R′n(I), we want to show that a maximum flow in Rn(I) is also equivalent
to a maximum vb-flow in R′n(I), and that the Max Flow-Min Cut Theorem holds for vb-
networks.

4.4. Finding a rank-maximal stable matching using polynomially-bounded weight
vectors 73

4.4.3 Rank-maximal stable matchings

In this section, we show how we are able to use our vb-network to find a rank-maximal
stable matching. First, we show that the Max Flow-Min Cut Theorem (Theorem 4.2.1) can
be extended to a vb-network. Next, we prove that, analogous to the exponential weight case,
a maximum profile closed subset of the rotation poset may be found by obtaining a minimum
cut of the vb-network. Finally, we show that Sleator and Tarjan’s Max Flow algorithm [71]
may be adapted to work with vb-networks, and that we are able to find a rank-maximal stable
matching in O(nm2 log n) time using polynomially-bounded weight vectors.

In Lemma 4.4.6 we show that vb-flows in R′n(I) correspond to high-weight flows in Rn(I).
Let f be a vb-flow in a vb-network, where val(f) = 〈f1, f2, ..., fn〉 and let c′T be a cut where
c(c′T) = 〈c′T1 , c

′
T2
, ..., c′Tn〉.

Proposition 4.4.5. Let f and f ′ be vb-flows. Letwi(val(f)) denote the ith term ofw(val(f))

and let w+
i (val(f ′)) denote the sum of w(val(f ′)) terms for all j such that i ≤ j ≤ n. If

fi > f ′i , then wi(val(f)) > w+
i (val(f ′)). Additionally, if i is the first point at which f and

f ′ differ, then w(val(f)) > w(val(f ′)).

Identical results hold for vb-capacities.

Proof. Recall from the footnote of Definition 4.4.4 that vb-flow values must contain only
integer elements.

The only difference between the structure of a profile p and a vb-flow f is that each profile
element must take a value between 0 and 2n inclusive, whereas the lower bound of vb-
flow elements is relaxed to −2n. This difference does not affect the validity of Proposition
4.3.2 and so we may use identical reasoning to show that if fi > f ′i , then wi(val(f)) >

w+
i (val(f ′)), and if i is the first point at which f and f ′ differ, thenw(val(f)) > w(val(f ′)).

Since vb-capacities have an identical structure to vb-flows the all results also hold for the
vb-capacity case.

Lemma 4.4.6. Let f and f ′ be vb-flows in R′n(I). Then val(f) ≺ val(f ′) if and only if

w(val(f)) < w(val(f ′)).

Additionally, let c′T and c′′T be cuts in R′n(I). Then c(c′T) ≺ c(c′′T) if and only if w(c(c′T)) <

w(c(c′′T)).

Proof. Suppose that val(f) ≺ val(f ′). We know val(f) 6= val(f ′), and at the first point i at
which val(f) and val(f ′) differ fi < f ′i . By Proposition 4.4.5, w(val(f)) < w(val(f ′)) as
required.

Now assume w(val(f)) < w(val(f ′)) and suppose for contradiction that val(f) � val(f ′).
If val(f) = val(f ′) then clearly w(val(f)) = w(val(f ′)) a contradiction. Therefore suppose

4.4. Finding a rank-maximal stable matching using polynomially-bounded weight
vectors 74

val(f) � val(f ′). Then, we can use identical arguments to the preceding paragraph to prove
that w(val(f)) > w(val(f ′)). But this contradicts our original assumption that w(val(f)) <

w(val(f ′)). Therefore, val(f) ≺ val(f ′).

Using identical reasoning to the vb-flow case for the vb-capacity case, we can show that
c(c′T) ≺ c(c′′T) if and only if w(c(c′T)) < w(c(c′′T)).

Lemma 4.4.7 shows that if there is no augmenting path in a vb-network, then the vb-flow
existing in this network is maximum.

Lemma 4.4.7. Let I be an instance of SMI and let R′n(I) and Rn(I) define the vb-network

and network of I respectively. For all vb-flows and vb-capacities we define a corresponding

flow or capacity for Rn(I) using the high-weight function w (Definition 4.3.1). Suppose f is

a vb-flow in R′n(I) that admits no augmenting path. Then f is a maximum vb-flow in R′n(I).

Proof. Let f be the flow corresponding to f in Rn(I). First, we show that f is a maximum
flow in Rn(I). Suppose for contradiction that f is not a maximum flow. Then there must
exist an augmenting path relative to f in Rn(I). Let EP denote the edges involved in this
augmenting path. Then, for each edge (u, v) ∈ EP of this augmenting path either,

• f(u, v) < c(u, v), in which case the vb-flow f(u, v) through edge (u, v) ∈ R′n(I) may
increase by 〈0, 0, ..., 1〉, or;

• f(v, u) > 0, and so the vb-flow f(v, u) through edge (v, u) ∈ R′n(I) may decrease by
〈0, 0, ..., 1〉.

Therefore, there exists an augmenting path relative to f in R′n(I). But this contradicts the
fact that f is a vb-flow in R′n(I) that admits no augmenting path. Hence our assumption that
f is not a maximum flow in Rn(I) is false.

We now show that f is a maximum vb-flow in R′n(I). Suppose for contradiction that this is
not the case. Then, there must exist a vb-flow f ′ such that val(f ′) � val(f). By Lemma
4.4.6, w(val(f ′)) > w(val(f)). Let f ′ be the flow corresponding to f ′ in Rn(I). Then we
have the following inequality:

val(f ′) = w(val(f ′)) > w(val(f)) = val(f)

contradicting the fact that f is a maximum flow inRn(I). Therefore f is a maximum vb-flow
in R′n(I).

This means if we use any Max Flow algorithm that terminates with no augmenting paths
(such as the Ford-Fulkerson Algorithm [17] adapted to work with vb-flows and vb-capacities)
we have found a maximum flow in a vb-network.

4.4. Finding a rank-maximal stable matching using polynomially-bounded weight
vectors 75

We now show that the Max Flow-Min Cut Theorem can be extended to a vb-network.

Theorem 4.4.8. Let I be an instance of SMI and let R′n(I) = (V ′, E ′) and Rn(I) define

the vb-network and network of I respectively. For all vb-flows and vb-capacities we define

a corresponding flow or capacity for Rn(I) using the high-weight function w (Definition

4.3.1). Let f be a maximum vb-flow through R′n(I) and c′T be a minimum cut of R′n(I). Then

c(c′T) = val(f).

Proof. Given f is a maximum vb-flow inR′n(I), we define a cut c′T inR′n(I) in the following
way. A partial augmenting path is an augmenting path from the source vertex s to vertex
u 6= t in V with respect to f in R′n(I). Note that, by Lemma 4.4.7 no augmenting path
from s to t may exist at this point since f is a maximum vb-flow. Let A be the set of
reachable vertices along partial augmenting paths, and let B = V \A. Then s ∈ A and
t ∈ B. Define c′T = {(u, v) : u ∈ A, v ∈ B}. Then c′T is a cut in R′n(I). Since there is no
partial augmenting path extending between vertices in A and vertices in B, we know that for
vertices u ∈ A and v ∈ B,

• if (u, v) ∈ E ′ then f(u, v) = c(u, v), and;

• if (v, u) ∈ E ′ then f(v, u) = 0.

Therefore val(f) = c(c′T) (see, for example, Cormen et al. [10, p. 721, Lemma 26.4] for a
proof of this statement).

Let f be the flow corresponding to f in Rn(I). We now show that c′T is a minimum cut in
R′n(I). Suppose for contradiction that this is not the case. Then there must exist a cut c′′T in
R′n(I) such that c(c′′T) ≺ c(c′T). By Lemma 4.4.6, w(c(c′′T)) < w(c(c′T)) and so we have the
following inequality.

c(c′′T) = w(c(c′′T)) < w(c(c′T)) = w(val(f)) = val(f)

But then c′′T is a cut with smaller capacity than val(f) in Rn(I) contradicting the Max Flow-
Min Cut Theorem in Rn(I). Hence c′T is a minimum cut in R′n(I).

As an example, Figure 4.4a shows a maximum flow over the vb-network R′n(I0), and Figure
4.4b shows these vb-flows translated into the high-weight network Rn(I0). Similar to the
high weight case, in R′n(I0), each edge e has a pair of associated integers e1/e2 where e1 is
the vb-flow over e and e2 is the vb-capacity of e. In Figure 4.4a each edge flow is positive,
that is, the first non-zero element of each vb-flow is positive as required. The maximum vb-
flow shown in this figure has saturated both edge (s, ρ0) leaving the source s and edge (ρ4, t)

entering the sink t. Let c′T = {(s, ρ0), (ρ4, t)}. Clearly c′T constitutes a cut as removing these

4.4. Finding a rank-maximal stable matching using polynomially-bounded weight
vectors 76

ρ0

ρ1

ρ2

ρ3

ρ4

s t
∞

∞

∞

∞

∞

∞ 〈0〉/
〈0, 0, 1,−1〉

〈1,−2, 0, 0, 0, 1〉/〈1, 0− 1,−1, 1〉

〈2,−
1,−1,−1, 0,

1〉/

〈2,−
1,−1,−1, 0,

1〉

〈1,−2, 0,
0, 0,

1〉/

〈1,−2, 0,
0, 0,

1〉

〈2, 0,−1,−1,−1,−2, 1, 2〉
〈2,−1,−1,−1, 0, 1〉/

(a) Vector-based network R′n(I0).

ρ0

ρ1

ρ2

ρ3

ρ4

s t
∞

∞

∞

∞

∞

∞ 0/
1336336

795036688/
819168496

362063824/

362063824

795036688/

795036688

362063824/
408840208

(b) High-weight network Rn(I0).

Figure 4.4: Maximum vb-flow and flow in the networksR′n(I0) andRn(I0) with both vector-
based and high-weight capacities respectively.

edges leaves no path from s to t. Since the vb-capacity of c′T (〈3,−3,−3, 1,−1, 0, 2〉) is
equal to the value of a maximum vb-flow of R′n(I0), c′T is also a minimum cut, by Theorem
4.4.8. The equivalent situation in the high-weight network is shown in Figure 4.4b.

In order to determine which rotations must be eliminated from the man-optimal stable match-
ing, we must first determine a maximum profile closed subset of the rotation poset. As with
the example in Section 4.3, we find the positive vertices which have edges into t that are not
in c′T . These are ρ1 and ρ2. In Theorem 4.4.9 we will prove that a maximum profile closed
subset of the vb-network comprises these vertices and their predecessors: {ρ0, ρ1, ρ2}. It was
shown in Section 4.3 that this was indeed a maximum weight closed subset of Rp(I0).

The following theorem is a restatement of Gusfield and Irving’s theorem [25, p. 130] proving
that a maximum profile closed subset of the rotation poset Rp(I) can be found by finding a
minimum s-t cut of the vb-network R′n(I), when using a vector-based weight function.

Theorem 4.4.9. Let I be an instance of SMI and let Rp(I), Rd(I) and R′n(I) denote the

rotation poset, rotation digraph and vb-network of I respectively. Let c′T be a minimum s-t

4.4. Finding a rank-maximal stable matching using polynomially-bounded weight
vectors 77

cut in R′n(I), and let Pc′T be the positive vertices of the network whose edges into t are not in

c′T . Then the vertices Pc′T and their predecessors define a maximum profile closed subset of

Rp(I). Further Pc′T is exactly the set of positive vertices of this closed subset of the rotation

poset.

Proof. Let S be an arbitrary set of rotations in I and define w(S) =
∑

si∈S p(si), that is,
w(S) is the total vector-based weight of these rotations. Let P be the set of all positive
rotations. For any set of rotations S ⊆ P , let N(S) be the set of all negative rotation
predecessors of S in the rotation digraph Rd(I). Let Q denote a maximum profile closed
subset of Rd(I). In order for a negative rotation vertex to exist in Q it must precede at least
one positive rotation vertex, otherwise Q could not be of maximum weight. Hence Q can be
found by maximising w(S) + w(N(S)) over all subsets of S ⊆ P .

We now show that w(S) + w(N(S)) is equivalent to w(S) − |w(N(S))| according to our
vector-based weight function. We know that w(N(S)) is negative (i.e. the first non-zero
element of w(N(S)) is negative) and therefore taking the absolute value of w(N(S)) will
reverse the signs of all non-zero elements. Taking the negative of |w(N(S))| reverses the
element signs once more and so we have w(S) + w(N(S)) = w(S)− |w(N(S))|.

Therefore we may say thatQ can be found by maximisingw(S)−|w(N(S))| over all subsets
of S ⊆ P . But by maximising this function, we also minimisew(P)−(w(S)−|w(N(S))|) =

w(P\S) + |w(N(S))|. That is, we are minimising the total weight of the positive rotations
not in S added to the absolute value of the negative rotations that are S’s predecessors. This
becomes clearer when looking at the vb-network R′n(I).

Let c(c′T) denote the capacity of the minimum cut c′T . We want to show that c(c′T) is at least
as small as w(P\S) + |w(N(S))| for any S ⊆ P . We can find an upper bound for c(c′T)

by doing the following. If we have a set of edges c′′T that comprises (1) all edges from s

to vertices in N(S), and (2) all edges from vertices in P\S to t, then c′′T is certainly a cut
since there can be no flow through R′n(I). Moreover c(c′′T) = w(P\S) + |w(N(S))| and
therefore, c(c′T) ≤ w(P\S) + |w(N(S))| for any S ⊆ P . Now let S∗ ⊆ P be the set of
positive rotation vertices that have edges into t that are not in c′T . Then c′T must contain all
edges from P\S∗ to t. Since c′T has finite capacity all the edges within it must also have
finite capacity and consequently c′T must also contain all edges in N(S∗) (since it cannot
contain any edges with capacity ∞). Therefore,

c(c′T) = w(P\S∗) + |w(N(S∗))| ≤ w(P\S) + |w(N(S))|

for all S ⊆ P . Hence, Pc′T = S∗ and, Pc′T and their predecessors define a maximum profile
closed subset of the rotation poset Rp(I).

4.4. Finding a rank-maximal stable matching using polynomially-bounded weight
vectors 78

It remains to show that we can adapt Sleator and Tarjan’s O(m2 log n) Max Flow algorithm
to work with vb-networks. This is shown in Lemma 4.4.10.

Lemma 4.4.10. Let I be an instance of SMI and let R′n(I) be a vb-network. We can use a

version of Sleator and Tarjan’s Max Flow algorithm [71] adapted to work with vb-networks

in order to find a maximum flow f of R′n(I) in O(nm2 log n) time.

Proof. A blocking flow in the high-weight setting is a flow such that each path through the
network from s to t has a saturated edge. Note that this is different from a maximum flow,
since a blocking flow may still allow extra flow to be pushed from s to t using backwards
edges in the residual graph. The Sleator-Tarjan algorithm [71] is an adapted version of
Dinic’s algorithm [11] which improves the time complexity of finding a blocking flow. This
is achieved by the introduction of a new dynamic tree structure.

The following operations are required from Sleator and Tarjan’s dynamic tree structure in
the max flow setting [71]: link, capacity, cut, mincost, parent, update and cost. Each of these
processes (not described here) consists of straightforward graph operations (such as adding
a parent vertex, deleting an edge etc.) and comparisons, additions, subtractions and updating
of edge capacities and flows. Since we have a vector-based interpretation of comparison,
addition and subtraction operations, it is possible to adapt Sleator and Tarjan’s Max Flow
algorithm to work in the vector-based setting.

Sleator and Tarjan’s algorithm [71] terminates with a flow that admits no augmenting path.
Let f be a vb-flow given at the termination of Sleator and Tarjan’s algorithm, as applied to
R′n(I). Since f admits no augmenting path, it follows, by Lemma 4.4.7 that f is a maximum
vb-flow inR′n(I). Sleator and Tarjan’s algorithm runs inO(m2 log n) time assuming constant
time operations for comparison, addition and subtraction. However, in the vb-flow setting,
each of these operations takes O(n) time in the worst case. Therefore, using the Sleator and
Tarjan algorithm, we have a total time complexity of O(nm2 log n) to find a maximum flow
of a vb-network.

Finally, we now show that there is an O(nm2 log n) algorithm for finding a rank-maximal
stable matching in an instance of SMI, based on polynomially-bounded weight vectors.

Theorem 4.4.11. Given an instance I of SMI there is an O(nm2 log n) algorithm to find a

rank-maximal stable matching in I that is based on polynomially-bounded weight vectors.

Proof. We use the process described in Section 4.4.1. All operations from this are well under
the required time complexity except number 4. Let R′n(I) = (V ′, E ′) be a vb-network of I .
Here, bounds on the number of edges and number of vertices are identical to the maximum
weight case, that is |E ′| ≤ m and |V ′| ≤ m. This is because, despite having alternative

4.5. Generous stable matchings 79

versions of flows and capacities, we have an identical graph structure to the high-weight
case.

By using the adaption of Sleator and Tarjan’s Max Flow algorithm from Lemma 4.4.10 we
achieve an overall time complexity of O(nm2 log n) to find a maximum vb-flow f in R′n(I).
Let c′T denote a minimum cut in R′n(I). By Theorem 4.4.8, c(c′T) = val(f). Therefore
using the process described in Section 4.4.1, with vector-based adaptations, we can find a
rank-maximal stable matching in O(nm2 log n) time without reverting to high weights.

Hence we have anO(nm2 log n) algorithm for finding a rank-maximal stable matching, with-
out reverting to high-weight operations.

4.5 Generous stable matchings

We now show how to adapt the techniques in Section 4.4 to the generous setting. Let I be
an instance of SMI and let M be a matching in I with profile p(M) = 〈p1, p2, ..., pk〉. Recall
the reverse profile pr(M) is the vector pr(M) = 〈pk, pk−1, ..., p1〉.

As with the rank-maximal case, we wish to use an approach to finding a generous stable
matching that does not require exponential weights. Recall n is the number of men in I . A
simple O(n) operation on a matching profile allows the rank-maximal approach described in
the previous section to be used in the generous case.

Let M be a stable matching in I with degree k and profile p(M) = 〈p1, p2, ..., pk−1, pk〉.
Since we wish to minimise the reverse profile pr(M) = 〈pk, pk−1, ..., p1〉 we can simply
maximise the reverse profile where the value of each element is negated. A short proof of
this is given in Proposition 4.5.1. We denote this profile by p′r(M), where

p′r(M) = 〈−pk,−pk−1, ...,−p2,−p1〉. (4.2)

Thus in general, profile elements corresponding to p′r(M) can take negative values. All
profile operations described in Section 4.3 still apply to profiles of this type.

Proposition 4.5.1. Let M be a matching in an instance I of SMI. Then,

M ∈ arg min{pr(M ′) : M ′ is a matching in I}

if and only if

M ∈ arg max{p′r(M ′) : M ′ is a matching in I}.

4.5. Generous stable matchings 80

Proof. Suppose M is a matching in I such that pr(M) is minimum taken over all matchings
in I and p′r(M) is not maximum taken over all matchings in I . Then, there is a matching M ′

in I such that p′r(M
′) � p′r(M).

Let pr(M) = 〈p1, p2, ..., pk〉 (note that we use indices from 1 to k, despite pr(M) being a re-
verse profile) and therefore p′r(M) = 〈−p1,−p2, ...,−pk〉. Also let p′r(M

′) = 〈p′1, p′2, ..., p′l〉.
Since p′r(M

′) � p′r(M), there must exist some i (1 ≤ i ≤ min{k, l}) such that p′i > −pi
and p′j = −pj for 1 ≤ j < i.

Then,

pr(M
′) = 〈−p′1,−p′2, ...,−p′l〉

= 〈p1, p2, ..., pi−1,−p′i, ...,−p′l〉

≺ 〈p1, p2, ...pi−1, pi, ..., pk〉

= pr(M).

(4.3)

Hence, pr(M) cannot be minimum taken over all matchings in I , a contradiction. Therefore,
M is a matching such that p′r(M) is maximum taken over all matchings in I .

Now conversely, suppose that M is a matching such that p′r(M) is maximum taken over all
matchings in I , but pr(M) is not minimum taken over all matchings in I . Then there is a
matching M ′ in I such that pr(M ′) ≺ pr(M).

Let pr(M) = 〈p1, p2, ..., pk〉 and therefore p′r(M) = 〈−p1,−p2, ...,−pk〉. Also let p′r(M
′) =

〈p′1, p′2, ..., p′l〉 and so pr(M ′) = 〈−p′1,−p′2, ...,−p′l〉. Since pr(M ′) ≺ pr(M), there must
exist some i (1 ≤ i ≤ min{k, l}) such that −p′i < pi and −p′j = pj for 1 ≤ j < i.

Then,

p′r(M
′) = 〈p′1, p′2, ..., p′l〉

= 〈−p1,−p2, ...,−pi−1, p′i, ..., p′l〉

� 〈−p1,−p2, ...− pi−1,−pi, ...,−pk〉

= p′r(M).

(4.4)

Hence, p′r(M) cannot be maximum taken over all matchings in I , a contradiction, meaning
that M is a matching such that pr(M) is minimum taken over all matchings in I .

We now show that a generous stable matching may be found by eliminating a maximum
profile closed subset of the rotation poset as in the rank-maximal case. Let ρ be the rotation
that takes us from stable matching M to stable matching M ′, where M and M ′ have profiles
p(M) = 〈p1, p2, ..., pk〉 and p(M ′) = 〈p′1, p′2, ..., p′k〉 with each profile having length k with-
out loss of generality. Then p(ρ) = 〈p′1−p1, p′2−p2, ..., p′k−pk〉 and so p(M ′) = p(M)+p(ρ).
We also know that p′r(M) = 〈−pk,−pk−1, ...,−p1〉 and p′r(M

′) = 〈−p′k,−p′k−1, ...,−p′1〉.

4.5. Generous stable matchings 81

Now, since p′r(ρ) = 〈pk−p′k, pk−1−p′k−1, ..., p1−p′1〉, in the generous case we have p′r(M
′) =

p′r(M) + p′r(ρ). We next present Lemma 4.5.2 which is an analogue of Lemma 4.4.1 and
shows that a generous stable matching may be found by eliminating a maximum profile
closed subset of the rotation poset.

Lemma 4.5.2. Let I be an instance of SMI and letM0 be the man-optimal stable matching in

I . A generous stable matching M may be obtained by eliminating a maximum profile closed

subset of the rotation poset S from M0.

Proof. Let Rp(I) be the rotation poset of I . There is a 1-1 correspondence between closed
subsets of Rp(I) and the stable matchings of I [25]. Let S be a maximum profile closed
subset of the rotation poset Rp(I), whose rotation profiles are reversed and negated, and let
M be the unique corresponding stable matching. Then by addition over reversed negated
profiles described in the text above this lemma, p′r(M) = p′r(M0) +

∑
ρi∈S p

′
r(ρi). Suppose

M is not generous. Then there is a stable matching M ′ such that p′r(M
′) � p′r(M). M ′

corresponds to a unique closed subset S ′ of the rotation poset, such that p′r(M
′) = p′r(M0) +∑

ρi∈S′ p
′
r(ρi). But p′r(M

′) � p′r(M) and so S cannot be a maximum profile closed subset
of Rp(I), a contradiction.

By Proposition 4.5.1, since M is a matching such that p′r(M) is maximum among all stable
matchings, M is also a matching such that pr(M) is minimum among all stable matchings.
Therefore M is a generous stable matching in I .

Recall that in Definition 4.3.1 we defined the high-weight function w in order to show that a
stable matching of maximum weight is a rank-maximal stable matching and then showed that
vb-flows and vb-capacities correspond directly with this high-weight setting. In the generous
case, since we seek a matching M that maximises p′r(M), the negation of the reverse profile,
the constraints of Definition 4.3.1 still apply. By Proposition 4.5.1 and Lemma 4.5.2, all
processes from the previous section to find a rank-maximal stable matching may now be
used to find a generous stable matching in O(nm2 log n) time.

However, it is also possible to exploit the structure of a generous stable matching to bound
some part of the overall time complexity by the generous stable matching degree rather than
by the number of men or women n.

Let I be an instance of SMI. First we find a minimum regret stable matching M ′ of I as
described in Section 2.2.2.2 in O(m) time. It must be the case that the degree d(M) of
a generous stable matching M is the same as the degree of M ′. Therefore, since no man
or women can be assigned to a partner of rank higher than d(M), it is possible to simply
truncate all preference lists beyond rank d(M), which has a positive effect on the overall
time complexity of finding a generous stable matching. Theorem 4.5.3 shows that a generous

4.5. Generous stable matchings 82

stable matching may be found in O(min{m,nd}2d log n) time, where d is the degree of a
minimum regret stable matching.

Theorem 4.5.3. Given an instance I of SMI there is an O(min{m,nd}2d log n) algorithm

to find a generous stable matching in I using polynomially-bounded weight vectors, where d

is the degree of a minimum regret stable matching.

Proof. Each step required to find a generous stable matching in I is outlined below along
with its time complexity.

1. Calculate the degree d of a minimum regret stable matching and truncate preference
lists accordingly. A minimum regret stable matching may be found inO(m) time [23].
We now assume all preference lists are truncated below rank d.

2. Calculate the man-optimal and woman-optimal stable matchings. The Extended Gale-
Shapley Algorithm takes O(min{m,nd}) time since the number of acceptable pairs is
now min{m,nd}.

3. Find all rotations using the Minimal Differences Algorithm [25] in O(min{m,nd})
time, since the number of acceptable pairs is now min{m,nd}.

4. Build the rotation digraph and vb-network, using the process described in Section
4.4, but where rotation profiles are reversed and negated for the building of the vb-
network. We know that no man-woman pair can appear in more than one rotation.
This means that the number of vertices in each of the associated rotation poset, rotation
digraph and vb-network is also O(min{m,nd}). Identical reasoning (with adapted
time complexities to suit the generous case) to that of Gusfield and Irving [25, p. 112]
may be used to obtain a bound of O(min{m,nd}) on the number of edges. This is
because we have a bound of O(min{m,nd}) for the creation of both type 1 and type
2 edges of the rotation digraph. Therefore we may build the rotation digraph and
vb-network in O(min{m,nd}) time.

5. Find a minimum cut of the vb-network using the process described in Section 4.4. With
O(min{m,nd}) vertices and edges and a maximum length of d for any preference list,
the Sleator and Tarjan algorithm [71] has a time complexity of O(min{m,nd}2 log n),
with an additional factor of O(d) to perform operations over vectors. Hence this step
takes a total of O(min{m,nd}2d log n) time.

6. Use this cut to find a maximum profile closed subset S of the rotations inO(min{m,nd})
time, since the numbers of vertices and edges are bounded by O(min{m,nd}).

7. Eliminate the rotations of S from the man-optimal matching to find the corresponding
rank-maximal stable matching.

4.6. Complexity of finding profile-based stable matchings in SR 83

Therefore the operation that dominates the time complexity is still Step 5 and the overall time
complexity to find a generous stable matching for an instance I of SMI isO(min{m,nd}2d log n).

4.6 Complexity of finding profile-based stable match-

ings in SR

SR, a generalisation of SMI, was first introduced in Section 2.3. In this section, we look at
the complexity of finding rank-maximal and generous stable matchings in SR.

First let RMSR be the problem of finding a rank-maximal stable matching in an instance I of
SR, and let GENSR be the problem of finding a generous stable matching in an instance I of
SR. We now define their respective decision problems.

Definition 4.6.1. We define RMSR-D, the decision problem of RMSR, as follows. An instance

(I, σ) of RMSR-D comprises an instance I of SR and a profile σ. The problem is to decide

whether there exists a stable matching M in I such that p(M) � σ.

Definition 4.6.2. We define GENSR-D, the decision problem of GENSR, as follows. An in-

stance (I, σ) of GENSR-D comprises an instance I of SR and a profile σ. The problem is to

decide whether there exists a stable matching M in I such that pr(M) � σr, where σr is the

reverse profile of σ.

We now show that both RMSR-D and GENSR-D are NP-complete.

Theorem 4.6.3. RMSR-D is NP-complete.

Proof. We first show that RMSR-D is in NP. Given a matching M it is possible to check that
M is stable in O(m) time by iterating through the preference lists of all men and women,
comparing the rank of a given agent on a preference list with the rank of the assigned partner
in M . It is also possible to calculate profile p(M) and to test whether p(M) � σ in O(n)

time. Therefore RMSR-D is in NP.

We reduce from VERTEX COVER in cubic graphs [21, 45] (VC-3). An instance (G,K) of
VC-3 comprises a graph G = (V,E), with vertex set V = {v1, v2, ..., vn} such that each
vertex has degree 3, and a positive integer K. The problem is to determine whether there
exists a set of vertices V ′ ⊆ V such that for every edge e ∈ E at least one endpoint of e is in
V ′, where |V ′| ≤ K.

We now construct an instance (I, σ) of RMSR-D from (G,K).

4.6. Complexity of finding profile-based stable matchings in SR 84

vi

v1i

v2i

v3i

(a) The neighbourhood of vi in the
graph G of a VC-3 instance.

For each vi ∈ V :

vi: wi, v1i , v2i , v3i , yi, ...
wi: xi, a1, a2, a3, a4, vi, ...
xi: a1, yi, wi, ...
yi: vi, xi, ...

(b) Preference lists of I for a given
vi.

aj: bj , ... (1 ≤ j ≤ 4)
bj: aj , ... (1 ≤ j ≤ 4)

(c) Additional preference lists for instance I .

Figure 4.5: Creation of an instance I of SR.

Agents of the constructed instance I of SR comprise A ∪ B ∪ V ∪ W ∪ X ∪ Y where
A = {a1, a2, a3, a4}, B = {b1, b2, b3, b4}, V = {v1, v2, ..., vn}, W = {w1, w2, ..., wn},
X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn}. For each vertex vi ∈ V with neighbours
v1i , v

2
i , v

3
i in G, shown in Figure 4.5a, we create complete preference lists for instance I of

SR as in Figure 4.5b, with members of the sets A, B, V , W , X and Y comprising new
roommate agents of the constructed SR instance. Note that relative order of v1i , v

2
i and v3i

in vi’s preference list is not important. Additional complete preference lists are created as
shown in Figure 4.5c. In these figures, the symbol “...” at the end of preference lists indicates
that all other agents in I who are not already specified in the preference list are then listed in
any order.

Finally, set the profile σ = 〈2n−K + 8, 2K,n−K, 0, n−K,K〉.

We claim that G has a vertex cover of size ≤ K if and only if I has a stable matching M
such that p(M) � σ.

Suppose that G has a vertex cover C such that |C| = k ≤ K. We create a matching M as
follows.

• Add, {aj, bj} to M for 1 ≤ j ≤ 4 giving 8 first choices.

• If vi ∈ C then add {vi, wi} and {xi, yi} to M . This means vi is assigned their first
choice in I , wi is assigned their sixth choice, and xi and yi both have their second
choices.

4.6. Complexity of finding profile-based stable matchings in SR 85

• If vi /∈ C then add {vi, yi} and {wi, xi} to M . Then vi is assigned their fifth choice in
I , yi and wi are assigned their first choices, and xi is assigned their third choice.

We now show that M is stable. Agents from A and B are always assigned to each other, and
so cannot block M . We now look through the four addition types of pair of M . Pair {vi, wi}
cannot blockM since wi cannot prefer vi to their assigned partner. Pair {xi, yi} cannot block
M since yi cannot prefer xi to their assigned partner. Pair {vi, yi} cannot block M since vi
cannot prefer yi to their assigned partner. Finally, pair {wi, xi} cannot block M since xi
cannot prefer wi to their assigned partner. The only remaining possibility is that {vi, vj}
blocks M . Assume for contradiction that this is the case. Then, it must be that {vi, yi} and
{vj, yj} are in M . But, by construction this implies that neither vi nor vj are in C, meaning
C is not a valid vertex cover, a contradiction since {vi, vj} ∈ E.

We are now able to calculate the profile p(M) = 〈2n − k + 8, 2k, n − k, 0, n − k, k〉 by
totalling the choices for each rank described in the bullet points above. Since k ≤ K, we
have p(M) � σ.

Conversely, suppose M is a stable matching in I such that p(M) � σ.

We first show that each agent may only be assigned to a subset of agents shown on their
preference lists above.

• For 1 ≤ j ≤ 4, since aj ranks bj as first choice and vice versa, {aj, bj} ∈M ;

• vi can never be assigned lower on their preference list than yi, or else {vi, yi} would
block M ;

• wi can never be assigned lower on their preference list than vi, or else {vi, wi} would
block M ;

• xi can never be assigned lower on their preference list than wi, or else {wi, xi} would
block M ;

• yi cannot be assigned lower on their preference list than xi, or else {xi, yi} would
block M , noting that {xi, a1} /∈M by the first point above;

• Finally, suppose {vi, vj} ∈M . Then one of wi, xi, yi is unassigned in M , a contradic-
tion to the above. So, either {vi, wi} ∈M or {vi, yi} ∈M .

If {vi, wi} ∈ M then we add vi to C. It remains to prove that C is a vertex cover of G.
Suppose for a contradiction that it is not. Then there exists an edge {vi, vj} ∈ E such that
vi /∈ C and vj /∈ C. By construction this means that {vi, yi} ∈ M and {vj, yj} ∈ M . But
then {vi, vj} blocks M , a contradiction.

4.6. Complexity of finding profile-based stable matchings in SR 86

Finally, suppose for contradiction that |C| = k > K. Note that if vi ∈ C then {vi, wi} ∈M ,
and in turn {xi, yi} ∈ M and also if vi /∈ C then {vi, yi} ∈ M , and in turn {wi, xi} ∈ M .
Therefore, using similar logic to above we can calculate the profile of M as p(M) = 〈2n−
k + 8, 2k, n− k, 0, n− k, k〉. Since k > K we have p(M) ≺ σ, a contradiction.

We have shown that G has a vertex cover of size ≤ K if and only if I has a stable matching
M such that p(M) � σ. Since the reduction described above can be completed in polynomial
time, RMSR-D is NP-hard. Finally, as RMSR-D is in NP, RMSR-D is also NP-complete.

Corollary 4.6.4. GENSR-D is NP-complete.

Proof. We use the same reduction and a similar argument as Theorem 4.6.3 to show that
G has a vertex cover of size ≤ K if and only if I admits a stable matching M such that
pr(M) � σr.

We are able to further extend these results looking at a two restricted decision problems.

Definition 4.6.5. We define RMSR-FIRST-D as follows. An instance of RMSR-FIRST-D, (I,K),

comprises an instance I of SR and an integer K. The problem is to decide whether there ex-

ists a stable matching M in I such that p1 ≥ K, where p(M) = 〈p1, p2, ..., pn〉.

Definition 4.6.6. We define GENSR-FINAL-D as follows. An instance of GENSR-FINAL-D,

(I,K), comprises an instance I of SR and an integer K. The problem is to decide whether

there exists a minimum regret stable matching M in I such that pi ≤ K, where i = d(M)

and p(M) = 〈p1, p2, ..., pn〉.

Corollary 4.6.7. RMSR-FIRST-D is NP-complete.

Proof. Using identical constructions and logic as in Theorem 4.6.3 above, we can see that
by considering only the first element of the profiles we are able to prove RMSR-FIRST-D is
NP-complete.

Corollary 4.6.8. GENSR-FINAL-D is NP-complete.

Proof. We first show that any stable matching M constructed as described in Theorem 4.6.3
will have degree 6. Suppose for contradiction that there exists a stable matching M with
d(M) ≤ 5. Then {wi, xi} ∈M for all i (1 ≤ i ≤ n) which implies that {vi, yi} ∈M for all
i (1 ≤ i ≤ n). If we pick any edge {vi, vj} ∈ E then {vi, vj} blocks M , a contradiction.

Now, using a similar proof to Theorem 4.6.3, we note that any stable matchingM constructed
from a vertex cover C of size ≤ K satisfies d(M) = 6 and p6 ≤ K, where p(M) =

〈p1, p2, ..., pn〉. Conversely, given a minimum regret stable matching M such that pi ≤ K

where i = d(M), it follows that i = 6. We then proceed as before, obtaining a vertex cover
C of size ≤ K.

4.7. Experiments and evaluations 87

4.7 Experiments and evaluations

4.7.1 Methodology

For our experiments we used randomly-generated data to compare rank-maximal, generous
and median3 stable matchings over a range of measures (cost, sex-equal score, degree, num-
ber of agents obtaining their first choice and number of agents who obtain a partner in the
lower a% of their preference list). This final measure (an example of which was given in
Section 4.1.3) may be more formally defined as the number of agents who obtain a partner
between their bth choice and nth choice inclusive, where b = (100 − a) n

100
+ 1. We also

investigated the effect of varying instance size (in terms of the number of men or women)
on these properties. Our experiments explored 19 separate instance types with the number
of men (and women) taking the values of {10, 20, ..., 100, 200, ..., 1000} and with 1000 in-
stances tested in each case. As in the experimental work of Chapter 3, all instances tested
were complete with uniform distributions on preference lists, as this in general produces a
larger number of stable matchings than using incomplete lists or linear distributions.

Also as in Chapter 3, the set of all stable matchings of an instance I of SMI were found using
Gusfield’s O(m + n|MS|) time Enumeration Algorithm [23]. The Enumeration Algorithm
comprises two runs of the extended Gale-Shapley Algorithm [19] (finding both the man-
optimal and woman-optimal stable matchings), one run of the Minimal Differences Algo-
rithm [25] (finding all rotations of an instance), creation of the rotation digraph, and finally
enumeration of all stable matchings using this digraph [23]. Using the list of enumerated
stable matchings we were then able to compute all the types of optimal stable matchings
described above. A timeout of 1 hour was used for this algorithm. Note that since the
time complexities of the algorithms described in this chapter do not beat the best known
for these problems, we did not implement our algorithms to test their performance. Ex-
periments were carried out on the machine described in Chapter 1, running Ubuntu version
17.10. Instance generation and statistics collection programs were written in Python and
run on Python version 2.7.14. The plot and table generation program was written in Python
and run using Python version 3.6.1. All other code was written in Java and compiled us-
ing Java version 1.8.0. All Java code was run on a single thread, with GNU Parallel [72]
used to run multiple instances in parallel. Java garbage collection was run in serial and a
maximum heap size of 1GB was distributed to each thread. Code and data repositories for
these experiments can be found at https://doi.org/10.5281/zenodo.2545798
and https://doi.org/10.5281/zenodo.2542703 respectively.

3Recall from Section 4.1.3 that although the median criterion is not profile-based, we are interested in
determining whether the median stable matching more closely approximates a rank-maximal or a generous
stable matching, in practice.

https://doi.org/10.5281/zenodo.2545798
https://doi.org/10.5281/zenodo.2542703

4.7. Experiments and evaluations 88

In addition to the above experiments, we also compared the minimum amount of memory
required to store edge capacities of the network (based on exponential weights) and associ-
ated vb-network (based on vector-based weights) for each instance. The instances described
above were used along with five additional instances each for n ∈ {2000, 3000, 4000, 5000}.
Unlike the instances described above for n ≤ 1000, space requirement calculations for these
larger instances were carried out on a machine running Ubuntu version 14.04 with 4 cores,
16GB RAM and Intel R©, CoreTM i7-4790 processors, and compiled using Java version 1.7.0.
This machine, compared to the one described in Chapter 1, was able to calculate solutions
to individual instances more quickly, although it could run fewer threads in parallel. In these
experiments, we were solving a small number of more complex instances and were not in-
terested in the time taken, but rather in the memory requirements, therefore this change in
machine did not impact our results. A larger timeout of 24 hours was used for each of two
runs of the extended Gale-Shapley Algorithm and one run of the Minimal Differences Algo-
rithm. Stable matchings were not enumerated for these instances. All other configurations
were the same as before.

A description of how space requirements were calculated now follows. In these calculations
we did not assume any particular implementation, but more generally estimated the mini-
mum number of bits required theoretically to store the capacities in each case. As mentioned
previously, the Minimal Differences Algorithm was used to find all rotations of an instance,
and only instances that did not timeout and had at least one rotation were used in these cal-
culations. For each rotation, a rotation profile was easily computed, and vector-based weight
and exponential weight edge capacities were then calculated directly from these rotation
profiles.

Let R be the set of rotations in an instance of SMI and let ρ be a rotation with profile p(ρ) =

{p1, p2, ..., pn}. The degree of p(ρ) may be described as the maximum index i for which
there exists some pi such that pi 6= 0. Let dt denote the maximum degree over all rotations
in R. An exponential weight we was calculated from p(ρ) according to Irving et al.’s [32]
original formula of a weight of nn−i for each agent assigned to their ith choice. In reality, we
reduced this to ddt−it which allowed a smaller number to be stored. Then, the number of bits
required to store we was calculated as dlog2wee with an additional standard 32-bit word used
to store the length of this bit representation4,5. A vector-based weightwv was calculated from

4For the case where we = 0, we calculated the number of bits required as 1 with an additional standard
32-bit word. For both the exponential weight and vector-based weight cases, if dt = 0, we calculated the
number of bits required as a standard 32-bit word.

5We note that since dlog2 wee is in general far greater than 32 (for large n), we chose to use a standard 32-bit
word to store the number of bits for each exponential number as opposed to assuming all exponential numbers
are an equal size. As an example, consider an instance of size n = 100, where there exists one rotation with
profile 〈1, 0, ...,−1〉 of length n (requiring

⌈
log2(100

99 − 1)
⌉
= 658 bits to store the associated exponential

number) and several rotations with profile 〈0, 0, ..., 0〉 (requiring 1 bit to store the associated exponential num-
ber). Were we to require all exponential numbers to be stored using the same number of bits, far more space

4.7. Experiments and evaluations 89

p(ρ) using lossless vector compression, as described in Section 4.1.2. Let z be the number
of non-zero elements of p(ρ). Then, the number of bits required to hold indices of non-zero
elements is given by z dlog2 ne (since the length of the profile is bounded by n), and the
number of bits required to hold values of non-zero elements is given by z(dlog2 2ne + 1)

(since each element is bounded below by −2n and above by 2n). The addition of a 32-
bit word then allowed the number z to be stored. Finally, two additional 32-bit words are
required over the whole vb-network (for storing the numbers n and 2n).

Correctness testing was conducted in the following way. All stable matchings produced by
all instances of size up to n = 1000 were checked for (1) capacity: each man (woman) may
only be assigned to one woman (man) respectively; and (2) stability: no blocking pair exists.
Additional correctness testing was also conducted for all instances of size n = 10, ..., 60. For
these instances, in addition to the above testing, a process took place to determine whether
the number of stable matchings found by the Enumeration Algorithm matched the number
found by an IP model. This was developed in Python version 2.7.14 with the IP modelling
framework PuLP (version 1.6.9) [59] using the CPLEX solver [28], version 12.8.0. Each in-
stance was run on a single thread with a time limit of 10 hours (all runs completed within this
time), using the same machine that was used for instances of size n ≤ 1000. All correctness
tests passed successfully.

4.7.2 Experimental results summary

Table 4.1 shows the 19 instance types of size up to n = 1000. As in Chapter 3, we label
instance types according to n, e.g., S100 is the instance type containing instances where
n = 100. In Columns 3 and 4 of this table we show the mean number of rotations |R|av
and the mean number of stable matchings |MS|av per instance type respectively. Column
5 displays the number of instances that did not complete within the 1 hour timeout and the
mean time taken to run the Enumeration Algorithm over a completed instance is shown in
Column 6. Figure 4.7 shows the mean number of stable matchings as n increases.

Figures 4.8 and 4.9 show the mean number of first choices and mean degree respectively, for
rank-maximal, median and generous stable matchings, as n increases. Figures 4.10 and 4.11
show the mean cost and sex-equal score respectively, of the above types of stable matchings
with the addition of their respective mean optimal values. Note that for any given instance,
the cost and sex-equal scores of all rank-maximal stable matchings are equal. This is also
the case for generous stable matchings. Our definition of the median stable matching (given
in Section 2.2.2.2) ensures that the median stable matching is unique. Thus, in contrast to
the case for Chapter 3, we are not required to find an optimal matching with best cost or sex-
equal score. Data for these plots may be seen as Tables B.1, B.2, B.3 and B.4 in Appendix B,

would be used than necessary.

4.7. Experiments and evaluations 90

where Table B.1 shows statistics for cost and sex-equal score, and Tables B.2, B.3 and B.4
display statistics for rank-maximal, generous and median stable matchings. Additionally,
these latter tables show the minimum, maximum and mean number of assignments la in the
last a% of all preference lists.

Finally, Figure 4.12 (with associated Table B.5 in Appendix B) shows a plot comparing the
mean number of bits required to store edge capacities of a network and vb-network using
exponential weights and vector-based weights respectively. In this plot, circles represent the
mean number of bits required for different values of n. The exact space requirements were
calculated according to the process described in Section 4.7.1. Solid circles represent data
points n ∈ {100, 200, ..., 1000} and these were used to calculate the best fit curves shown
when assuming a second order polynomial model. 90% confidence intervals using the 5th
and 95th percentile measurements for each representation are also displayed. Above n =

1000 we extrapolate up until n = 100, 000, showing the expected trend with an increasing n.
Data points for instances of size n ∈ {10, 20, ..., 90, 2000, 3000, 4000, 5000} are represented
as unfilled circles. These data were not used to calculate the best fit curves, but are added to
the figure to help determine the validity of our extrapolation mentioned above.

The main findings of these experiments are:

• Number of stable matchings: From Figure 4.7 we can see that the mean number of
stable matchings increases with instance size. Lennon and Pittel [44] showed that the
number of expected stable matchings in an instance of size n tends to the order of
n log n. Our experiments confirm this result and show a reasonably linear correlation
between n log n and the mean number of stable matchings for instances with n ≥ 100.

• Number of first choices: As expected, rank-maximal stable matchings obtain the largest
number of first choices by some margin, when compared to generous and median sta-
ble matchings. When looking at the mean number of first choices, this margin appears
to increase from almost 1:1 for instance type S10 (6.9 for rank-maximal compared to
6.0 and 6.1 for generous and median respectively) to approximately 3:1 for instance
type S1000 (158.4 for rank-maximal compared to 63.5 and 71.5 for generous and me-
dian respectively). Generous and median stable matchings are far more aligned, how-
ever generous is increasingly outperformed by median on the mean number of first
choices with ratios starting at around 1:1 for S10, gradually increasing to 1.1:1 for
S1000. This is summarised in the plot shown in Figure 4.8.

• Number of last a% choices: For rank-maximal stable matchings, the mean number
of assignments in the final 10% of preference lists was low, increasing from 0.4 for
instance type S10 to 1.4 for instance type S1000. Note that this increase is far lower
than the rate of instance size increase. The mean number of generous stable matching

4.7. Experiments and evaluations 91

choices in the final 50% of preference lists decreased from 2.4 to 0.0 over all instance
types. As the generous criteria minimises final choices, this is likely due to the number
of stable matchings increasing with larger instance size. Finally, it is interesting to note
that the mean number of median stable matching choices in the final 20% of preference
lists decreases from 0.5 to 0.0 despite the number of lower ranked choices not being
directly minimised. Figure 4.9 shows how the mean degree changes with respect to n
for rank-maximal, median and generous stable matchings. We can see that on average
the rank-maximal criteria performs badly, putting men or women very close to the end
of their preference list. As above the generous criteria outperforms either of the other
optimisations, with median somewhere in between.

• Cost and sex-equal score: The range between minimum and maximum optimal costs
and sex-equal scores over all instance types (Table B.1) is small when compared with
results found for these measures in the rank-maximal, generous and median stable
matching experiments. In Figure 4.10, we can see that a generous stable matching is
a close approximation of an egalitarian stable matching in practice. This is followed
by the median and then the rank-maximal solution concepts. A similar, though less
pronounced, result holds for the sex-equal stable matching, as can be seen in Figure
4.11.

• Median stable matchings: We can see from Figures 4.8, 4.9, 4.10 and 4.11 that over all
measures, a median stable matching, on average, more closely approximates a gener-
ous stable matching. One possible reason for this is as follows. A rank-maximal stable
matching may be seen as prioritising some agents obtaining high choice partners (out
of their set of possible partners in any stable matching), possibly at the expense of
some agents obtaining low choice partners (out of their set of possible partners in any
stable matching). A generous stable matching on the other hand, ensures no-one is as-
signed to a partner of worse rank than the degree of a minimum-regret stable matching,
and so it is less likely that agents achieve low choice partners and, consequently (by
similar reasoning to the rank-maximal case), less likely that agents achieve high choice
partners as well. Thus, a median stable matching, which assigns each agent with their
middle-choice partner (out of the set of all the possible partners in any stable matching)
is more likely to approximate a generous stable matching.

• Space requirement: From Figure 4.12, we can see clearly that the exponential weights
of the network require more space on average than the vector-based weights of the
associated vb-network, and that this difference increases as n grows large. Note
that the additional small number of data points (not used to calculate the curves) at
n ∈ {2000, 3000, 4000, 5000} fit this model well. At n = 1000, the vector-based
weights require approximately 10 times less space than the exponential weights. Fi-

4.7. Experiments and evaluations 92

Men’s preferences:
m1: w1 ... w2

m2: w2 ... w1

...
m2i−1: w2i−1 ... w2i

m2i: w2i ... w2i−1
...
mn−1: wn−1 ... wn
mn: wn ... wn−1

Women’s preferences:
w1: m2 m1 ...
w2: m1 m2 ...
...
w2i−1: m2i m2i−1...
w2i: m2i−1m2i ...
...
wn−1: mn mn−1 ...
wn: mn−1mn ...

Figure 4.6: SM instance I1, with i satisfying 1 ≤ i ≤ n/2.

nally, we can see that at n = 100, 000, we expect the vector-based weights to be around
100 times less costly in terms of space than the exponential weights, with the space
requirement for the exponential weights nearing 1GB.

Finally, we show that for a specific family of instances, the result above is even more
pronounced. Consider the family of SM instances represented by instance I1 in Figure
4.6, where n is even. In I1, the “...” symbol in each man’s preference list indicates that
all other women, not already specified, are listed in any order (after his first choice and
before his last choice). Similarly in each woman’s preference list, all other men, not
already specified, are listed in any order after her second choice. For n = 100, 000,
I1 requires over 10GB to store exponential weights of the network, and only 0.64MB
to store the equivalent vector-based weights of the vb-network. This shows that in
certain circumstances, the vector-based weights can be over 100, 000 times less costly
in terms of space than the exponential weights.

4.7. Experiments and evaluations 93

Case n |R|av |M|av Timeout Time (ms)
S10 10 1.8 3.0 0 50.3
S20 20 4.2 6.5 0 60.2
S30 30 6.5 10.9 0 75.2
S40 40 8.9 15.7 0 93.2
S50 50 11.2 20.9 0 113.8
S60 60 13.4 27.2 0 133.9
S70 70 15.9 34.0 0 163.7
S80 80 18.2 40.6 0 205.5
S90 90 20.0 46.4 0 235.1

S100 100 22.4 54.2 0 278.0
S200 200 41.9 138.8 0 1084.5
S300 300 59.2 231.0 0 2886.1
S400 400 76.2 337.6 0 7972.7
S500 500 90.7 442.0 0 15934.8
S600 600 105.8 566.1 0 32925.3
S700 700 119.1 675.5 0 50802.4
S800 800 131.4 804.0 1 87169.2
S900 900 144.9 937.6 0 128878.0

S1000 1000 157.6 1115.2 1 196029.9

Table 4.1: General instance information and algorithm timeout results.

0 1000 2000 3000 4000 5000 6000 7000
n log n

0

200

400

600

800

1000

M
ea

n
nu

m
be

r o
f s

ta
bl

e
m

at
ch

in
gs

 |
s| a

v

Figure 4.7: Plot of the mean number of stable matchings |MS|av with increasing n, where n
is the number of men or women. A linear model has been assumed for the best-fit line.

4.7. Experiments and evaluations 94

0 200 400 600 800 1000
n

0

20

40

60

80

100

120

140

160
M

ea
n

nu
m

be
r o

f f
irs

t c
ho

ice
s

Rank-maximal
Median
Generous

Figure 4.8: Plot of the mean number of first choices for rank-maximal, median and generous
stable matchings with increasing n, where n is the number of men or women. A second
order polynomial model has been assumed for all best-fit lines.

0 200 400 600 800 1000
n

0

200

400

600

800

M
ea

n
de

gr
ee

Rank-maximal
Median
Generous

Figure 4.9: Plot of the mean degree for rank-maximal, median and generous stable matchings
with increasing n, where n is the number of men or women and the degree of a matching
is the rank of a worst ranking man or woman. A second order polynomial model has been
assumed for all best-fit lines.

4.7. Experiments and evaluations 95

0 200 400 600 800 1000
n

0

20000

40000

60000

80000

100000

120000

140000

160000
M

ea
n

co
st

Rank-maximal
Median
Generous
Egalitarian

Figure 4.10: Plot of the mean cost for rank-maximal, median, generous and egalitarian stable
matchings with increasing n, where n is the number of men or women and the cost of a
matching is the sum of ranks of all men and women. A second order polynomial model has
been assumed for all best-fit lines.

101 102 103

n

100

101

102

103

104

105

M
ea

n
se

x-
eq

ua
l s

co
re

Rank-maximal
Median
Generous
Sex-equal

Figure 4.11: A log-log plot of the mean sex-equal score for rank-maximal, median, generous
and sex-equal stable matchings with increasing n, where n is the number of men or women
and the sex-equal score of a matching is the absolute difference in cost between the set of
men and set of women. A first order polynomial model has been assumed for all best-fit
lines.

4.8. Conclusions and future work 96

100 101 102 103 104 105

n

10 1

101

103

105

107

109
bi

ts
 re

qu
ire

d

1MB

10MB

100MB

1GB

Exponential weight approach
Vector-based weight approach

Figure 4.12: A log-log plot of the number of bits required to store a network and vb-network
for varying the number of men or women n up to n = 100, 000, comparing exponential
weight and vector-based weight representations. A second order polynomial model has been
assumed for all best-fit lines.

4.8 Conclusions and future work

In this chapter we have described a new method for computing rank-maximal and gener-
ous stable matchings for an instance of SMI using polynomially-bounded weight vectors
that avoids the use of weights that can be exponential in the number of men. By using this
approach we were able to avoid high-weight calculation problems such as overflow, inaccu-
racies and limitations in memory that may occur with some data types. We were also able
to demonstrate an approximate factor of 10 improvement when using polynomially-bounded
weight vectors with vector compression, as opposed to exponential weights, in terms of the
space required to store the network (used to find a maximum flow when computing the op-
timal matchings above) for instances where n = 1000. We also showed that for a specific
instance of size n = 100, 000, the space required to store exponential weights was over
10GB, whereas the vector-based weights were over 100, 000 times less costly, requiring only
0.64MB. This improvement is expected to increase further as n grows large. An additional
benefit to our new approach is that as all operations are conducted on rotation profiles (which
denote the change in number of men or women with an ith choice partner), it is arguable that
our algorithm is more transparent in terms of its execution.

Finally, we also showed that the problem of finding rank-maximal and generous stable
matchings in SR is NP-hard. This results still applies even in the restricted cases where

4.8. Conclusions and future work 97

we are either finding a stable matching that maximises the number of first choices or find-
ing a minimum regret stable matching M that minimises the number of dth choices where
d = d(M).

In Section 4.1, two potential improvements that could be made to the process of finding a
rank-maximal stable matching in an instance of SMI were highlighted. First was the adapta-
tion of Orlin’s [64] Max Flow algorithm to work in the vector-based setting. This adaptation
would result in a time complexity of O(nm2) to find a rank-maximal stable matching, im-
proving on the method outlined in this chapter by a factor of log n, however it is not clear
that Orlin’s algorithm can be adapted to the vb-flow setting. Additionally, Feder [15] used
an entirely different technique based on weighted SAT for finding a rank-maximal stable
matching in O(n0.5m1.5) time. It remains to be seen if this could be adapted to work in the
vector-based setting.

98

Chapter 5

Large stable matchings in SPA-ST

5.1 Introduction

5.1.1 Background

In this chapter we consider stable matchings in the Student-Project Allocation problem, and
in particular we present a 3

2
-approximation algorithm for the problem of finding a maximum

stable matching in an instance of SPA-ST. An introduction to SPA-ST was given in Section
2.5.2.2. Recall that for a special case of SPA-ST, known as HRT, the problem of finding a
maximum stable matching (MAX-HRT) is NP-hard [51]. This result also extends to the SPA-
ST case where the problem of finding a maximum stable matching in SPA-ST (MAX-SPA-ST)
is also NP-hard. As described in Section 2.4.2 Király [40] developed a 3

2
-approximation

algorithm for MAX-HRT. In this chapter, we extend this algorithm to MAX-SPA-ST.

5.1.2 Motivation

In universities all over the world, students need to be assigned to projects as part of their
degree programmes. Lecturers typically offer a range of projects, and students may rank a
subset of the available projects in preference order. Lecturers may have preferences over
students, or over the projects they offer, or they may not have explicit preferences at all.
There may also be capacity constraints on the maximum numbers of students that can be
allocated to each project and lecturer. We consider the case where lecturers have preferences
over students that rank their projects. This problem may be modelled by SPA-S (introduced
in Section 2.5.2). In the case of SPA-S, the desired matching must be stable with respect
to the given preference lists. It is also reasonable to assume that a student (lecturer) may
be indifferent between two or more projects (students) on their preference list. With this

5.2. Preliminary definitions 99

extension, the problem may be modelled by SPA-ST and since stable matchings in SPA-ST

may be of different sizes [6], finding a large stable matching is highly desirable.

Finding a large stable allocation of students to projects manually is time-consuming and
error-prone. Consequently many universities automate the allocation process using a cen-
tralised algorithm. Given the typical sizes of problem instances (e.g., 152 students at the
School of Computing Science, University of Glasgow in 2019), the efficiency of the match-
ing algorithm is of paramount importance.

5.1.3 Contribution

In this chapter we describe a linear-time 3
2
-approximation algorithm for MAX-SPA-ST. This

algorithm is a non-trivial extension of Király’s approximation algorithm for MAX-HRT [40].
In Chapter 6, we describe an IP model to solve MAX-SPA-ST optimally and perform a series
of experiments on randomly-generated data to test our approximation algorithm’s perfor-
mance. See Chapter 6 for more information on this work.

A natural “cloning” technique, involving transforming an instance I of SPA-ST into an in-
stance I ′ of SMTI, and then using Király’s 3

2
-approximation algorithm for SMTI [40] in order

to obtain a similar approximation in SPA-ST, does not work in general, as we show in Sec-
tion 5.3. This motivates the need for a bespoke algorithm for the SPA-ST case. Note that we
use Király’s SMTI algorithm rather than his HRT algorithm as the former was more precisely
described in [40].

5.1.4 Structure of the chapter

Section 5.2 gives some preliminary definitions for the chapter. Section 5.3 describes a tech-
nique to convert an SPA-ST instance to an SMTI instance, and gives an example where using
this technique with Király’s 3

2
-approximation algorithm for SMTI does not, in general, al-

low for the retention of the 3
2

bound in the original SPA-ST instance. Section 5.4 describes
our new 3

2
-approximation algorithm for MAX-SPA-ST, with correctness proofs presented in

Section 5.5. Finally, Section 5.6 discusses future work.

5.2 Preliminary definitions

The definitions of a blocking pair and stability in SPA-ST were introduced in Section 2.5.2.2,
with the formal definition of a blocking pair given in Section 2.5.2.1. In order to more easily
describe certain stages of the approximation algorithm, we provide the following additional
definitions. Let (si, pj) be a blocking pair of M . Then we say that (si, pj) is of type (3x)

5.3. Cloning from SPA-ST to SMTI 100

if Conditions 1, 2 and 3(x) are true in the blocking pair definition, where x ∈ {a, b, c}.
Blocking pairs of type (3b) are split into two subtypes as follows. (3bi) defines a blocking
pair of type (3b) where si is already assigned to another project of lk’s. (3bii) defines a
blocking pair of type (3b) where this is not the case.

Finally, we let Mopt denote a maximum stable matching for a given instance of SPA-ST.

5.3 Cloning from SPA-ST to SMTI

Manlove [47, Theorem 3.11] describes a polynomial transformation to convert a stable
matching in an instance of HRT to a stable matching in an instance of SMTI, and vice versa,
where the sizes of the matchings is conserved. An obvious question, which we address in
this section, relates to whether a similar transformation could be used for SPA-ST, which
could allow existing approximation algorithms for HRT and SMTI to be used for the problem
of finding a maximum stable matching in SPA-ST.

A natural cloning method to convert instances of SPA-ST to instances of HRT is given as
Algorithm 5.1. This algorithm involves converting students into residents and projects into
hospitals. Hospitals inherit their capacity from projects. Residents inherit their preference
lists naturally from students. Hospitals inherit their preference lists from the lecturer who
offers their associated project; a resident entry ri is ranked only if ri also ranks this hospital.
In order to translate lecturer capacities into the HRT instance, a number of dummy residents

Rk
d are created for each lecturer lk. The number of dummy residents created for lecturer lk,

denoted fk, is equal to the sum of capacities of their offered projects Pk minus the capacity
of lk. We will ensure that all dummy residents are assigned in any stable matching. To this
end, each dummy resident has a first position tie of all hospitals associated with projects of
lk, and each hospital hj in this set has a first position tie of all dummy residents associated
with lk. In this way, as all dummy residents must be assigned in any stable matching by
Proposition 5.3.1, lecturer capacities are automatically adhered to.

Proposition 5.3.1. Let I ′ be an instance of HRT created from an instance I of SPA-ST using

Algorithm 5.1. All dummy residents must be assigned in any stable matching in I ′.

Proof. In I ′, for each lecturer lk, the number of dummy residents created is equal to fk =∑
pr∈Pk cr−dk. Assume for contradiction that one of the dummy residents rkd1 is unassigned

in some stable matching M ′ of I ′.

Let Hk denote the set of hospitals associated with projects of lk. Since rkd1 is a dummy
resident, it must have all hospitals in Hk tied in first position. Also, each hospital in Hk must
rank all fk dummy residents (associated with lk) in tied first position. Since rkd1 is unassigned
in M ′, rkd1 would prefer to be assigned to any hospital in Hk. Also, since there is at least one

5.3. Cloning from SPA-ST to SMTI 101

dummy resident unassigned, there must be at least one hospital hkd2 in Hk that has fewer
first-choice assignees than its capacity. Hospital hkd2 must exist since if it did not, then all
dummy residents would be assigned. But then (rkd1 , h

k
d2

) would be a blocking pair of M ′, a
contradiction.

Algorithm 5.1 Clone-SPA-ST, converts an SPA-ST instance into an HRT instance.
Require: An instance I of SPA-ST

Ensure: Return an instance I ′ of HRT

1: for each student si in S do
2: Create a resident ri
3: ri inherits their preference list from si’s list, ranking hospitals rather than projects
4: end for
5: for each project pj in P do
6: Create a hospital hj
7: hj’s capacity is given by c′j = cj
8: Let lk be the lecturer offering project pj
9: hj inherits their preference list from lk’s list, where a resident entry ri is retained

only if ri also ranks hj
10: end for
11: for each lecturer lk in L do
12: if dk <

∑
pj∈Pk cj then

13: let fk =
∑

pj∈Pk cj − dk
14: Create fk new dummy residents Rk

d = {rk1 , rk2 , . . . , rkfk}
15: Let Hk denote the set of all hospitals in I ′ associated with the projects of Pk in I
16: The preference list of each dummy resident is given by a first position tie of all

hospitals in Hk

17: A first position tie of all residents in Rk
d is added to the start of the preference list

of each hospital in Hk

18: end if
19: end for
20: Let HRT instance I ′ be formed from all residents (including dummy residents) and hos-

pitals
21: return I ′

Theorem 5.3.2. Given an instance I of SPA-ST we can construct an instance I ′ of HRT in

O(n1+Dn2+m) time with the property that a stable matchingM in I can be converted to a

stable matching M ′ in I ′ in O(Dn2 +m) time, where |M ′| = |M |+
∑

lk∈L
∑

pr∈Pk(cr)−dk.

Here, n1 denotes the number of students, n2 the number of projects, D the total capacities of

lecturers and m the total length of student preference lists.

Proof. Suppose M is a stable matching in I . We construct an instance I ′ of HRT using
Algorithm 5.1. The time complexity of O(n1 + Dn2 + m) for the reduction carried out by
the algorithm is achieved by noting that I ′ has a maximum of n1 + n2 + D agents and that
there are a maximum of Dn2 +m acceptable resident-hospital pairs.

5.3. Cloning from SPA-ST to SMTI 102

Initially let M ′ = M (such that residents take the place of students and hospitals take the
place of projects). By Proposition 5.3.1, all dummy residents of I ′ must be assigned in M ′

and so we let the set of dummy residents Rd form a resident-complete matching with the
set of all hospitals and add these pairs to M ′. This is possible because for each lecturer lk,
each dummy resident associated with lk, denoted rkd , finds all hospitals inHk acceptable, and
moreover the total number of remaining positions of the hospitals is equal to

∑
pr∈Pk(cr) −

|M(lk)| = δk and the number of dummy residents fk satisfies fk =
∑

pr∈Pk(cr) − dk ≤ δk,
since |M(lk)| ≤ dk.

We claim that M ′ is stable in I ′. Suppose for contradiction that (ri, hj) blocks M ′ in I ′.

• All dummy residents must be assigned in M ′ to their first-choice hospital by above,
hence ri corresponds to a student si in I . Resident ri inherited their preference list
from si hence we know that si finds pj acceptable. Therefore by the definition given
in Section 2.5.2.1, Condition 1 of a blocking pair of M in I is satisfied.

• Resident ri is either unassigned in M ′ or prefers hj to M ′(ri). Student si is therefore
in an equivalent position and Condition 2 of a blocking pair of M in I is satisfied.

• Hospital hj is either undersubscribed or prefers ri to their worst assignee in M ′.

– If hj is undersubscribed, then pj must also be undersubscribed. If lk were full
in M then |M(lk)| = dk and so the number of remaining positions of hospitals
in Hk before dummy residents are added, δk, is equal to the number of dummy
residents fk in this scenario. But then all hospitals in Hk (including hj) would be
full in M ′, contradicting the fact that hj is undersubscribed. Therefore lk must be
undersubscribed, but then this satisfies Condition 3(a) of a blocking pair.

– If hj prefers ri to their worst assignee in M ′, then lk must prefer si to their worst
assignee in M(pj). This satisfies Condition 3(c) of a blocking pair.

Therefore by the definition in Section 2.5.2.1, (si, pj) is a blocking pair of M in I , a contra-
diction.

Since dummy residents are added in the algorithm’s execution it is clear that in general
|M | 6= |M ′|. However, since all dummy residents must be assigned by Proposition 5.3.1, it
is trivial to calculate the difference

|M ′| = |M |+ |Rd| = |M |+
∑
lk∈L

∑
pr∈Pk

(cr)− dk.

5.3. Cloning from SPA-ST to SMTI 103

Student preferences:
s1: p1 p2
s2: p2 p3

Project details:
p1: lecturer l1, c1 = 1
p2: lecturer l1, c2 = 1
p3: lecturer l2, c3 = 1

Lecturer preferences:
l1: s2 s1
l2: s2

d1 = 1
d2 = 1

(a) Example SPA-ST instance
I0. Non-stable matching
M = {(s1, p1), (s2, p3)} derived
from M ′ is shown in bold.

Resident preferences:
r1: h1 h2
r2: h2 h3

r3: (h1 h2)

Hospital preferences:
h1: r3 r1
h2: r3 r2 r1
h3: r2

c′1 = 1
c′2 = 1
c′3 = 1

(b) HRT instance I ′0 created
from the SPA-ST instance in
Figure 5.1a Stable matching
M ′ = {(r1, h1), (r2, h3), (r3, h2)}
is shown in bold.

Figure 5.1: Conversion of a stable matching M ′ in HRT into matching M in SPA-ST.

The converse of Theorem 5.3.2 is not true in general, as shown in the example in Figure 5.1.
Here, a stable matching M ′ in an instance I ′0 of HRT does not convert into a stable matching
M of the associated instance I0 of SPA-ST.

A natural question arises as to whether, using a cloning process, we may retain the 3
2

bound
in specific cases where the converted matching M of our original instance of SPA-ST does in
fact turn out to be stable. This might occur if, for example, a specific stable matching returned
by Király’s algorithm as applied to the cloned instance turns out to be stable in the original
SPA-ST instance. The cloning process in question would be as follows. For instance I of
SPA-ST, we use the cloning process described in Algorithm 5.1 to convert to instance I ′ of
HRT then further convert to instance I ′′ of SMTI using the process described by Manlove [47,
Theorem 3.11]. Next, Király’s 3

2
-approximation algorithm is used on I ′′ generating stable

matching M ′′. Finally, M ′′ is converted to matching M of I . Then, assuming M is stable,
the question is whether it is always the case that M is a 3

2
-approximation to a maximum

stable matching of I .

The following example demonstrates Algorithm 5.1 in use and shows that the process de-
scribed above is not sufficient to retain the 3

2
-approximation in an SPA-ST instance I even if

the constructed matching M is stable in I .

Algorithm 5.1 is used to convert the SPA-ST instance I1 in Figure 5.2a to an instance I ′1 of
HRT in Figure 5.2b which is then itself converted to the instance I ′′1 of SMTI in Figure 5.2c
using the process described by Manlove [47, Theorem 3.11]. In this process men corre-
spond to hospitals in I ′1 (projects in I1) and women correspond to residents in I ′1 (students

5.3. Cloning from SPA-ST to SMTI 104

Student preferences:
s1: p3
s2: p4 p1 p2
s3: p3
s4: (p2 p3) p4 p1

Project details:
p1: lecturer l1, c1 = 2
p2: lecturer l1, c2 = 2
p3: lecturer l2, c3 = 2
p4: lecturer l2, c4 = 1

Lecturer preferences:
l1: s2 s4
l2: s4 (s1 s2 s3)

d1 = 2
d2 = 2

(a) Example SPA-ST in-
stance I1.

Resident preferences:
r1: h3
r2: h4 h1 h2
r3: h3
r4: (h2 h3) h4 h1
r5: (h1 h2)
r6: (h1 h2)
r7: (h3 h4)

Hospital preferences:
h1: (r5 r6) r2 r4
h2: (r5 r6) r2 r4
h3: r7 r4 (r1 r3)
h4: r7 r4 r2

c′1 = 2
c′2 = 2
c′3 = 2
c′4 = 1

(b) HRT instance I ′1 con-
verted from the SPA-ST in-
stance in Figure 5.2a.

Women’s preferences:
w1: (m3 m7)
w2: m4 (m1 m5) (m2 m6)
w3: (m3 m7)
w4: (m2 m3 m6 m7) m4 (m1 m5)
w5: (m1 m2 m5 m6)
w6: (m1 m2 m5 m6)
w7: (m3 m4 m7)

Men’s preferences:
m1: (w5 w6) w2 w4

m2: (w5 w6) w2 w4

m3: w7 w4 (w1 w3)
m4: w7 w4 w2

m5: (w5 w6) w2 w4

m6: (w5 w6) w2 w4

m7: w7 w4 (w1 w3)

(c) SMTI instance I ′′1 converted
from the HRT instance in Figure
5.2b.

Figure 5.2: Conversion of an SPA-ST instance to an SMTI instance.

in I1). Executing Király’s [40] 3
2
-approximation algorithm on the SMTI instance I ′′1 could

(depending on order of proposals) yield the matching

M ′′ = {(m2, w5), (m3, w4), (m4, w2), (m6, w6), (m7, w7)}.

A trace of how this matching is created is given in Table 5.1. As w5, w6 and w7 were
created from dummy residents in Algorithm 5.1, M ′′ (stable in I ′′1) converts into the stable
matching M = {(s2, p4), (s4, p3)} of size 2 in I1. But a maximum stable matching in I1 is
of size 4, given by Mopt = {(s1, p3), (s2, p1), (s3, p3), (s4, p2)}. Therefore using the cloning
method described above and Király’s algorithm does not result in a 3

2
-approximation to the

maximum stable matching for instances of SPA-ST, even when the resultant SPA-ST matching
is stable. This motivates the development of a 3

2
-approximation algorithm to the maximum

stable matching specifically for instances of SPA-ST.

In Appendix C, we introduce instance I2, which is almost identical to I1. However, applying
the above process to I2 does yield a stable matching M in I2 that is a 3

2
-approximation to a

maximum stable matchingMopt. Comparing these two instances, we give an intuitive idea as
to how the addition of dummy residents in the conversion of an SPA-ST instance to an SMTI

instance can prevent the retention of the 3
2

bound. See Section C.1 for more details.

5.3. Cloning from SPA-ST to SMTI 105

Action m1 m2 m3 m4 m5 m6 m7

1 m7 applies to w7, accepted w7

2 m6 applies to w5, accepted w5 w7

3 m5 applies to w6, accepted w6 w5 w7

4 m4 applies to w7, rejected, m4 removes w7 w6 w5 w7

5 m4 applies to w4, accepted w4 w6 w5 w7

6 m3 applies to w7, rejected, m3 removes w7 w4 w6 w5 w7

7 m3 applies to w4, accepted, m4 removes w4 w4 w6 w5 w7

8 m4 applies to w2, accepted w4 w2 w6 w5 w7

9 m2 applies to w5, rejected, m2 removes w5 w4 w2 w6 w5 w7

10 m2 applies to w6, rejected, m2 removes w6 w4 w2 w6 w5 w7

11 m2 applies to w2, rejected, m2 removes w2 w4 w2 w6 w5 w7

12 m2 applies to w4, rejected, m2 removes w4 w4 w2 w6 w5 w7

13 m2 advantaged w4 w2 w6 w5 w7

14 m2 applies to w5, accepted, m6 removes w5 w5 w4 w2 w6 w7

15 m6 applies to w6, rejected, m6 removes w6 w5 w4 w2 w6 w7

16 m6 applies to w2, rejected, m6 removes w2 w5 w4 w2 w6 w7

17 m6 applies to w4, rejected, m6 removes w4 w5 w4 w2 w6 w7

18 m6 advantaged w5 w4 w2 w6 w7

19 m6 applies to w5, rejected, m6 removes w5 w5 w4 w2 w6 w7

20 m6 applies to w6, accepted, m5 removes w6 w5 w4 w2 w6 w7

21 m5 applies to w5, rejected, m5 removes w5 w5 w4 w2 w6 w7

22 m5 applies to w2, rejected, m5 removes w2 w5 w4 w2 w6 w7

23 m5 applies to w4, rejected, m5 removes w4 w5 w4 w2 w6 w7

24 m5 advantaged w5 w4 w2 w6 w7

25 m5 applies to w5, rejected, m5 removes w5 w5 w4 w2 w6 w7

26 m5 applies to w6, rejected, m5 removes w6 w5 w4 w2 w6 w7

27 m5 applies to w2, rejected, m5 removes w2 w5 w4 w2 w6 w7

28 m5 applies to w4, rejected, m5 removes w4 w5 w4 w2 w6 w7

29 m5 inactive w5 w4 w2 − w6 w7

30 m1 applies to w5, rejected, m1 removes w5 w5 w4 w2 − w6 w7

31 m1 applies to w6, rejected, m1 removes w6 w5 w4 w2 − w6 w7

32 m1 applies to w2, rejected, m1 removes w2 w5 w4 w2 − w6 w7

33 m1 applies to w4, rejected, m1 removes w4 w5 w4 w2 − w6 w7

34 m1 advantaged w5 w4 w2 − w6 w7

35 m1 applies to w5, rejected, m1 removes w5 w5 w4 w2 − w6 w7

36 m1 applies to w6, rejected, m1 removes w6 w5 w4 w2 − w6 w7

37 m1 applies to w2, rejected, m1 removes w2 w5 w4 w2 − w6 w7

38 m1 applies to w4, rejected, m1 removes w4 w5 w4 w2 − w6 w7

39 m1 inactive − w5 w4 w2 − w6 w7

Table 5.1: Trace of running Király’s SMTI 3
2
-approximation algorithm for instance I ′′1 in

Figure 5.2c. In this table, the phrase “mi removeswj” indicates that manmi removes woman
wj from their preference list.

5.4. 3
2
-approximation algorithm 106

5.4 3
2-approximation algorithm

5.4.1 Introduction and preliminary definitions

We begin by defining key terminology before describing the approximation algorithm itself
in Section 5.4.2, which is a non-trivial extension of Király’s HRT algorithm [40].

A student si ∈ S is either in phase 1, 2 or 3. In phase 1 there are still projects on si’s list
that they have not applied to. In phase 2, si has iterated once through their list and are doing
so again whilst a priority is given to si on each lecturer’s preference list, compared to other
students who tie with si. In phase 3, si is considered unassigned and carries out no more
applications. A project pj is fully available if pj and lk are both undersubscribed, where
lecturer lk offers pj . A student si meta-prefers project pj1 to pj2 if either (i) rank(si, pj1) <

rank(si, pj2), or (ii) rank(si, pj1) = rank(si, pj2) and pj1 is fully available, whereas pj2 is not.
In phase 1 or 2, si may be either available, provisionally assigned or held. Student si is
available if they are not assigned to a project. Student si is provisionally assigned to project
pj if si has been assigned in phase 1 to pj and there is a project still on si’s list that they
meta-prefer to pj . Otherwise, si is held.

If a student si is a provisionally assigned to project pj , then (si, pj) is said to be precarious.
If si is held in their assignment to pj , then (si, pj) is said to be non-precarious. A project pj
is precarious if it is assigned a student si such that (si, pj) is precarious, otherwise pj is non-

precarious. A lecturer is precarious if they offer a project pj that is precarious, otherwise lk
is non-precarious. Lecturer lk meta-prefers si1 to si2 if either (i) rank(lk, si1) < rank(lk, si2),
or (ii) rank(lk, si1) = rank(lk, si2) and si1 is in phase 2, whereas si2 is not. The favourite

projects Fi of a student si are defined as the set of projects on si’s preference list for which
there is no other project on si’s list meta-preferred to any project in Fi. A worst assignee of
lecturer lk is defined to be a student in M(lk) of worst rank, with priority given to phase 1

students over phase 2 students. Similarly, a worst assignee of lecturer lk in M(pj) is defined
to be a student in M(pj) of worst rank, prioritising phase 1 over phase 2 students, where lk
offers pj .

We remark that some of the above terms such as favourite and precarious have been defined
for the SPA-ST setting by extending the definitions of the corresponding terms as given by
Király in the HRT context [40].

5.4.2 Description of the algorithm

Algorithm Max-SPA-ST-Approx (Algorithm 5.2) begins with an empty matching M which
will be built up over the course of the algorithm’s execution. All students are initially set to

5.4. 3
2
-approximation algorithm 107

be available and in phase 1. The algorithm proceeds as follows. While there are still available
students in phase 1 or 2, choose some such student si. Student si applies to a favourite project
pj at the head of their list, that is, there is no project on si’s list that si meta-prefers to pj . Let
lk be the lecturer who offers pj . We consider the following cases.

• If pj and lk are both undersubscribed then (si, pj) is added to M . Clearly if (si, pj)

were not added to M , it would potentially be a blocking pair of type (3a).

• If pj is undersubscribed, lk is full and lk is precarious where precarious pair (si′ , pj′) ∈
M for some project p′j offered by lk, then we remove (si′ , pj′) from M and add pair
(si, pj). This notion of precariousness allows us to find a stable matching of sufficient
size even when there are ties in student preference lists (there may also be ties in
lecturer preference lists). Allowing a pair (si′ , pj′) ∈ M to be precarious means that
we are noting that si′ has other fully available project options in their preference list
at equal rank to pj′ . Hence, if another student applies to pj′ when pj′ is full, or to a
project offered by lk where lk is full, we allow this assignment to happen removing
(si′ , pj′) from M , since there is a chance that the size of the resultant matching could
be increased. Note that since si′ does not remove pj′ from their preference list, si′ will
get a chance to reapply to pj′ if applications to other fully available projects at the same
rank are unsuccessful.

• If on the other hand pj is undersubscribed, lk is full and lk meta-prefers si to a worst
assignee si′ , where (si′ , pj′) ∈ M for some project pj′ offered by lk, then we remove
(si′ , pj′) from M and add pair (si, pj). It makes intuitive sense that if lk is full and gets
an offer to an undersubscribed project pj from a student si that they meta-prefer to a
worst assigned student si′ , then lk would want to remove si′ from pj′ and take on si
for pj . Student si′ will subsequently remove pj′ from their preference list as lk will not
want to assign to them on re-application. This is done via Algorithm 5.3.

• If pj is full and precarious then pair (si, pj) is added toM while precarious pair (si′ , pj)

is removed. As before, this allows si′ to potentially assign to other fully available
projects at the same rank as pj on their list. Since si′ does not remove pj from their
preference list, si′ will get another chance to assign to pj if these other applications to
fully available projects at the same rank are not successful.

• If pj is full and lk meta-prefers si to a worst assignee si′ in M(pj), then pair (si, pj)

is added to M while (si′ , pj) is removed. As this lecturer’s project is full (and non-
precarious) the only time they will want to add a student si to this project (meaning the
removal of another student) is if si is meta-preferred to a worst student si′ assigned to
that project. Similar to before, si′ will not subsequently be able to assign to this project
and so removes it from their preference list via Algorithm 5.3.

5.4. 3
2
-approximation algorithm 108

Algorithm 5.2 Max-SPA-ST-Approx(I), 3
2
-approximation algorithm for SPA-ST.

Require: An instance I of SPA-ST

Ensure: Return a stable matching M where |M | ≥ 2
3
|Mopt|

1: M ← ∅
2: All students are initially set to be available and in phase 1
3: while there exists an available student si ∈ S who is in phase 1 or 2 do
4: Let lk be the lecturer who offers pj
5: si applies to a favourite project pj ∈ A(si)
6: if pj is fully available then
7: M ←M ∪ {(si, pj)}
8: else if pj is undersubscribed, lk is full and (lk is precarious or lk meta-prefers si to a

worst assignee) then . according to the worst assignee definition in Section 5.4.1
9: if lk is precarious then

10: Let pj′ be a project in Pk such that there exists (si′ , pj′) ∈M that is precarious
11: else . lk is non-precarious
12: Let si′ be a worst assignee of lk such that lk meta-prefers si to si′ and let

pj′ = M(si′)
13: Remove-Pref(si′ , pj′)
14: end if
15: M ←M\{(si′ , pj′)}
16: M ←M ∪ {(si, pj)}
17: else if pj is full and (pj is precarious or lk meta-prefers si to a worst assignee in

M(pj)) then
18: if pj is precarious then
19: Identify a student si′ ∈M(pj) such that (si′ , pj) is precarious
20: else . pj is non-precarious
21: Let si′ be a worst assignee of lk in M(pj) such that lk meta-prefers si to si′
22: Remove-Pref(si′ , pj)
23: end if
24: M ←M\{(si′ , pj)}
25: M ←M ∪ {(si, pj)}
26: else
27: Remove-Pref(si, pj)
28: end if
29: end while
30: Promote-Students(M)
31: return M ;

5.4. 3
2
-approximation algorithm 109

Algorithm 5.3 Remove-Pref(si, pj), subroutine for Algorithm 5.2. Removes a project pj
from a student si’s preference list.
Require: An instance I of SPA-ST and a student si and project pj
Ensure: Return an instance I where pj is removed from si’s preference list

1: Remove pj from si’s preference list
2: if si’s preference list is empty then
3: Reinstate si’s preference list
4: if si is in phase 1 then
5: Move si to phase 2
6: else if si is in phase 2 then
7: Move si to phase 3
8: end if
9: end if

10: return I

Algorithm 5.4 Promote-Students(M), subroutine for Algorithm 5.2. Removes all block-
ing pairs of type (3bi).
Require: SPA-ST Instance I and matching M that does not contain blocking pairs of type

(3a), (3bii) or (3c).
Ensure: Return a stable matching M .

1: while there are still blocking pairs of type (3bi) do
2: Let (si, pj′) be a blocking pair of type (3bi)
3: M ←M\{(si,M(si))}
4: M ←M ∪ {(si, pj′)}
5: end while
6: return M

When removing a project from a student si’s preference list (the Remove-Pref operation),
if si has removed all projects from their preference list and is in phase 1 then their preference
list is reinstated and they are set to be in phase 2. If on the other hand they were already in
phase 2, then they are set to be in phase 3 and are hence inactive. The proof that Algorithm
5.2 produces a stable matching (see Section 5.5) relies only on the fact that a student iterates
once through their preference list. Allowing students to iterate through their preference lists
a second time when in phase 2 allows us to find a stable matching of sufficient size when
there are ties in lecturer preference lists (there may also be ties in student preference lists).
This is due to the meta-prefers definition where a lecturer favours one student si over another
si′ if they are the same rank and si is in phase 2 whereas si′ is not. Similar to above, this then
allows si to steal a position from si′ with the chance that si′ may find another assignment and
increase the size of the resultant matching.

After the main while loop has terminated, the final part of the algorithm begins where all
blocking pairs of type (3bi) are removed using the Promote-Students operation (Algorithm
5.4).

5.4. 3
2
-approximation algorithm 110

Student preferences:
s1: (p2 p3) p1
s2: p2 p1
s3: (p7 p8)
s4: p7
s5: p1 (p2 p3)
s6: p1
s7: (p4 p6)
s8: p5
s9: p5
s10: p9 p12
s11: p9 p10
s12: p11

Project details:
p1: lecturer l1, c1 = 1
p2: lecturer l1, c2 = 2
p3: lecturer l2, c3 = 2
p4: lecturer l3, c4 = 1
p5: lecturer l3, c5 = 1
p6: lecturer l4, c6 = 1
p7: lecturer l4, c7 = 1
p8: lecturer l5, c8 = 1
p9: lecturer l6, c9 = 1
p10: lecturer l6, c10 = 1
p11: lecturer l6, c11 = 1
p12: lecturer l7, c12 = 1

Lecturer preferences:
l1: (s1 s2) s6 s5
l2: s1 s5
l3: (s8 s9) s7
l4: s7 (s3 s4)
l5: s3
l6: s12 (s10 s11)
l7: s10

d1 = 2
d2 = 2
d3 = 1
d4 = 1
d5 = 1
d6 = 2
d7 = 2

Figure 5.3: SPA-ST instance I3.

5.4.3 Example execution of the algorithm

A detailed trace of Algorithm Max-SPA-ST-Approx (Algorithm 5.2) over the course of its
execution, as applied to the example instance I3 of SPA-ST shown in Figure 5.3, is given in
Table 5.2. In this trace, each application by a student to a project is recorded along with their
effects on the instance and matching (such as adding or removing a pair from a matching,
removing a preference list element and a student changing phase). The line numbers of
Algorithm 5.2 where these effects take place are also recorded. The state of the matching
after each application may be seen in the final twelve columns, indicating the assignments
of each of the twelve students. An asterisk next to a project pj for column si indicates that
(si, pj) is a precarious pair. From this trace, we can see that all parts of the algorithm are
executed at some point (although not all line numbers are listed in the trace, this observation
may be easily verified by examining the structure of Algorithm 5.2).

For this particular instance, the algorithm outputs stable matching M where

M = {(s1, p3), (s2, p2), (s3, p8), (s5, p3), (s6, p1),

(s7, p6), (s9, p5), (s10, p12), (s11, p9), (s12, p11)}.

Action Line(s) s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
1 s1 applies to p2

(s1, p2) added to M 7 p2*
2 s2 applies to p2

(s2, p2) added to M 7 p2* p2
3 s3 applies to p7

(s3, p7) added to M 7 p2* p2 p7*
4 s4 applies to p7

(s3, p7) removed from M , (s4, p7) added to M 24, 25 p2* p2 p7
5 s5 applies to p1

(s1, p2) removed from M , (s5, p1) added to M 15, 16 p2 p7 p1
6 s6 applies to p1

s5 removes p1, (s5, p1) removed from M , (s6, p1) added to M 22, 24, 25 p2 p7 p1
7 s7 applies to p4

(s7, p4) added to M 7 p2 p7 p1 p4
8 s8 applies to p5

s7 removes p4, (s7, p4) removed from M , (s8, p5) added to M 13, 15, 16 p2 p7 p1 p5
9 s9 applies to p5

s9 rejected, s9 removes p5, s9 moves to phase 2 27 p2 p7 p1 p5
10 s9 applies to p5

s8 removes p5, s8 moves to phase 2, (s8, p5) removed from M ,
(s9, p5) added to M

22, 24, 25 p2 p7 p1 p5

11 s10 applies to p9
(s10, p9) added to M 7 p2 p7 p1 p5 p9

12 s11 applies to p9
s11 rejected, s11 removes p9 27 p2 p7 p1 p5 p9

Table continued on next page.

Action Line(s) s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
13 s11 applies to p10

(s11, p10) added to M 7 p2 p7 p1 p5 p9 p10
14 s12 applies to p11

s10 removes p9, (s10, p9) removed from M , (s12, p11) added to M 13, 15, 16 p2 p7 p1 p5 p10 p11
15 s3 applies to p8

(s3, p8) added to M 7 p2 p8 p7 p1 p5 p10 p11
16 s1 applies to p3

(s1, p3) added to M 7 p3 p2 p8 p7 p1 p5 p10 p11
17 s5 applies to p3

(s5, p3) added to M 7 p3 p2 p8 p7 p3 p1 p5 p10 p11
18 s7 applies to p6

s4 removes p7, s4 moves to phase 2, (s4, p7) removed from M ,
(s7, p6) added to M

13, 14, 15 p3 p2 p8 p3 p1 p6 p5 p10 p11

19 s8 applies to p5
s8 rejected, s8 removes p5, s8 moves to phase 3 27 p3 p2 p8 p3 p1 p6 - p5 p10 p11

20 s10 applies to p12
(s10, p12) added to M 7 p3 p2 p8 p3 p1 p6 - p5 p12 p10 p11

21 s4 applies to p7
s4 rejected, s4 removes p7, s4 moves to phase 3 27 p3 p2 p8 - p3 p1 p6 - p5 p12 p10 p11

22 Identifying blocking pairs of type (3bi)
(s11, p10) removed from M , (s11, p9) added to M 30 p3 p2 p8 - p3 p1 p6 - p5 p12 p9 p11

Table 5.2: Detailed trace of running Algorithm Max-SPA-ST-Approx for instance I3 in Figure 5.3. Projects that form part of a precarious pair with their
associated student are marked with an “*”. In this table, the phrase “si removes pj” indicates that student si removes project pj from their preference list.

5.5. 3
2
-approximation algorithm correctness proofs 113

5.5 3
2-approximation algorithm correctness proofs

5.5.1 Introduction

In this section we present proofs of correctness for Algorithm Max-SPA-ST-Approx (Al-
gorithm 5.2). These involve showing firstly that the algorithm always produces a stable
matching, secondly that the algorithm runs in linear time, and finally that the performance
guarantee is 3

2
. The proofs required for this algorithm are naturally longer and more com-

plex than those given by Király [40] for SMTI (formal proofs were not provided for his HRT

algorithm), as SPA-ST generalises SMTI to the case that lecturers can offer multiple projects,
and projects and lecturers may have capacities greater than 1. These extensions add extra
components to the definition of a blocking pair (given in Section 2.5.2.1) which in turn adds
complexity to the algorithm and its proof of correctness.

The rest of this section is structured as follows. Section 5.5.2 presents proofs of several
preliminary results that are used throughout Section 5.5. Proof that the algorithm produces
a stable matching is given in Section 5.5.3. Section 5.5.4 shows that the algorithm runs in
linear time with respect to the total length of student preference lists. Finally in Section
5.5.5, we present proof of the 3

2
performance guarantee.

5.5.2 Proofs of preliminary results

This section comprises several proofs of preliminary results that are used in the following
sections. In general, they concern the issue of when in the algorithm’s execution a project
may be fully available, or when a project or lecturer may be precarious.

First we show in Proposition 5.5.3 (the proof of which uses Propositions 5.5.1 and 5.5.2),
that if a project is not fully available at some point in the algorithm’s execution, then it cannot
subsequently become fully available.

Proposition 5.5.1. Let T0 denote the point in Algorithm 5.2’s execution at the end of the

main while loop. If a project pj is not fully available at some point before T0, then it cannot

subsequently become fully available before T0.

Proof. Assume for contradiction that project pj is not fully available at some point before
T0, but then subsequently becomes fully available before T0. At a point where pj is not fully
available, either pj is full or lk is full (or both), where lk offers pj . If lk is full, it is clear
that lk must remain so, since students can only be removed from a project of lk’s if they are
immediately replaced by another student assigning to a project of lk. Therefore assume that
pj is full. Then they must somehow become undersubscribed in order to be classified as fully

5.5. 3
2
-approximation algorithm correctness proofs 114

available. The only way this can happen before T0 is if lecturer lk removes a student assigned
to pj in order to replace them with a student becoming assigned to another project of lk’s.
But then this deletion can only occur if lk is full and as above lk remains full, so pj cannot
become fully available before T0, a contradiction.

Proposition 5.5.2. Suppose a blocking pair (si, pj′) of type (3bi) exists at the end of the main

while loop of Algorithm 5.2, where lk offers pj′ , and denote this time by T0. Then at time T0,

lk is full.

Proof. Assume for contradiction that lk is undersubscribed at T0. We know that once a lec-
turer is full they must remain full (since we can only remove a pair associated with a lecturer
if we are immediately replacing it with an associated pair). Therefore lk must have always
been undersubscribed. At T0, pj′ must be undersubscribed for (si, pj′) to be a blocking pair
of type (3bi). Therefore at T0, pj′ is fully available and must always have previously been
fully available by Proposition 5.5.1. But si must have applied to pj′ at least once before T0
and as pj′ was fully available this must have been accepted. Then since (si, pj′) is not in the
matching at T0 it must have been removed before T0. But in order for this to happen either
pj′ or lk would have to be full, contradicting the fact that pj′ was fully available before T0.
Hence lk must be full at T0.

Proposition 5.5.3. During the execution of Algorithm 5.2, if a project pj is not fully available

at some point, then it cannot subsequently become fully available.

Proof. Let T0 denote the point in the algorithm’s execution at the end of the main while
loop. We know from Proposition 5.5.1 that if pj is not fully available before T0 then it cannot
subsequently become fully available before T0.

Let lecturer lk offer project pj and assume pj is not fully available at T0. If lk contains no
blocking pairs of type (3bi) then there can be no changes to allocations of pj after T0. There-
fore assume lk contains at least one blocking pair of type (3bi) at T0. Then by Proposition
5.5.2, lk is full at T0. But Algorithm 5.4 does not change the student allocations for any
lecturer and hence lk remains full and pj cannot subsequently become fully available.

It remains to show that if pj is fully available at T0, that it cannot subsequently cease to be
fully available and then return to be fully available before the end of the algorithms execution.
Since lk is undersubscribed at T0, lk cannot contain any blocking pairs by Proposition 5.5.2.
Since Algorithm 5.4 can only affect allocations of projects offered by a full lecturer it is not
possible for pj to change to being not fully available after T0.

In Proposition 5.5.4 we show that after the main while loop, no student can be promoted to
a fully available project and cannot create a precarious pair. This proposition is used as a
stepping stone for other propositions in this section.

5.5. 3
2
-approximation algorithm correctness proofs 115

Proposition 5.5.4. Algorithm 5.4 cannot promote a student to a fully available project, nor

can it create a precarious pair.

Proof. Suppose in Algorithm 5.4, si is being promoted from project pj to project pj′ both
offered by lecturer lk. We know that in the main while loop si must have iterated over their
preference list at least to the position of pj (and perhaps further if si has been previously
promoted). Therefore, si has either been removed from and / or rejected by all projects at
the same rank as pj′ in their preference list at least once. This can only occur if each of those
projects was not fully available at the time and by Proposition 5.5.3 none of these projects
could subsequently be fully available. Therefore when si is promoted to pj′ , it can never
form a precarious pair.

Propositions 5.5.5 and 5.5.6 describe conditions in the algorithm’s execution under which it
is not possible for a particular project or lecturer to be precarious.

Proposition 5.5.5. Let pj be a project and let lk be the lecturer who offers pj . If lk is full and

non-precarious at some point, then they cannot subsequently become precarious. Similarly,

if a project pj is full and non-precarious at some point, then it cannot subsequently become

precarious. Further if lk is full and pj is non-precarious then pj cannot subsequently become

precarious.

Proof. We know that a precarious pair cannot be created in Algorithm 5.4 by Proposition
5.5.4, therefore we focus on the main while loop of Algorithm 5.2. Let lecturer lk be full
and non-precarious at some point during the main while loop Algorithm 5.2’s execution and
assume that they later becomes precarious. Since lk is currently non-precarious, the only way
they can become so is by a student si forming a precarious assignment to a project of lk’s. But
recall that a student will first apply to fully available projects at the head of their preference
list. Since lk is full, no project of lk’s can be considered fully available. In order for si to
apply to a project of lk’s they must first apply to all fully available projects at the head of
their list, gain the assignment and then be removed from M . But if a pair (si, pj) is removed
from M , pj cannot be fully available. Ultimately, si will have exhausted all previously fully
available projects at the head of their list before eventually applying to a project of lk’s. But
then at that point si cannot create a precarious pair giving a contradiction.

Now, let pj be full and non-precarious at some point during the main while loop of Algorithm
5.2’s execution and assume that it later becomes precarious. If pj remains full until the time
at which it becomes precarious then using similar reasoning to above, any student assigning
to pj cannot be precarious giving a contradiction. If pj becomes undersubscribed at any point
then lk must be full for the remainder of the algorithm by Proposition 5.5.3. It is possible
at this point that lk is precarious (with precarious pairs that include projects other than pj)

5.5. 3
2
-approximation algorithm correctness proofs 116

but since lk is full, pj is not fully available. Therefore using similar reasoning to before, any
student assigning to pj cannot create a precarious pair giving a contradiction.

It also follows then that if lk is full and pj is non-precarious then pj cannot subsequently
become precarious.

Proposition 5.5.6. Suppose a blocking pair (si, pj′) of type (3bi) exists at the end of the main

while loop of Algorithm 5.2, where lk offers pj′ , and denote this time by T0. Then at time T0,

lk is non-precarious.

Proof. Let M0 be the matching being built at T0 and let (si, pj) ∈ M0 with lk offering pj .
Suppose for contradiction that lk is precarious at T0.

As (si, pj′) is a blocking pair of type (3bi), pj′ must be undersubscribed at T0. Also, since
(si, pj′) is a blocking pair we know that si prefers pj′ to pj . Therefore si must have re-
moved pj′ from their preference list. Denote this time as T1. The removal at T1 occurred
either because (si, pj′) was removed as a non-precarious pair, or because si was rejected on
application to pj′ .

• If (si, pj′) was removed as a non-precarious pair at T1 then either lk was full, non-
precarious and si was a worst student assigned to lk, or pj′ was full, non-precarious
and si was a worst student assigned to pj′ .

• If on the other hand, si was rejected on application to pj′ at T1, we know that either lk
was full, non-precarious and lk did not meta-prefer si to a worst student in M(lk), or
pj′ was full, non-precarious and lk did not meta-prefer si to a worst student in M(pj).

Whichever of these possibilities occurred we know that at T1, either lk was full and non-
precarious or pj was full and non-precarious.

• Firstly suppose lk was full and non-precarious at T1. In this case by Proposition 5.5.5,
lk cannot subsequently become precarious, a contradiction to the fact that lk is precar-
ious at T0.

• Therefore, pj′ must have been full and non-precarious at T1. By Proposition 5.5.5, pj′

cannot subsequently become precarious. We also know that pj′ must go from being full
to being undersubscribed since pj′ is undersubscribed at T0. Denote this point in the
algorithm’s execution as T2. At T2, pj′ must be non-precarious by above and so a non-
precarious pair involved with pj′ is removed and replaced with a pair involved with
some other project of lk’s. This could only happen if lk was full and non-precarious
and so as before cannot again become precarious, a contradiction.

5.5. 3
2
-approximation algorithm correctness proofs 117

Therefore, lk must be non-precarious at T0.

In Proposition 5.5.7 we show that after the main while loop, it is not possible for any project
to change its fully available status or for any project or lecturer to change their precarious
status.

Proposition 5.5.7. Algorithm 5.4 cannot change the fully available status of any project or

the precarious status of any project or lecturer.

Proof. By Proposition 5.5.4, in Algorithm 5.4 it is not possible to assign a student to a
fully available project. Therefore we cannot change a fully available project to be not fully
available. Also, any promotions that take place will be to remove a blocking pair of type
(3bi), and so by definition the lecturer involved, say lk, will be full and |M(lk)| will remain
the same. Therefore, all of lk’s projects are not fully available at the start of Algorithm 5.4
and must remain so.

By Proposition 5.5.4, in Algorithm 5.4 it is not possible to create a precarious pair, meaning
we cannot change a non-precarious project or lecturer to being a precarious project or lec-
turer. Finally, by Proposition 5.5.6 no changes can be made to any assignments involving a
precarious project or lecturer, hence we cannot change a precarious project or lecturer to be
non-precarious.

Recall, a worse student than student si, according to lecturer lk, is any student with a lower
rank than si on lk’s preference list, or if si is in phase 2, any student of the same rank that is
in phase 1.

Proposition 5.5.8 examines two specific circumstances. Firstly, it shows that if a lecturer
lk is full, then they cannot subsequently accept a student worse than or equal to a worst
student in M(lk), unless lk is precarious at the point of application. Secondly, it shows that
if a project pj is full and non-precarious at some point before the end of the main while
loop, then pj cannot subsequently accept a student worse than or equal to a worst student
in M(pj) (according to the lecturer who offers pj), before the end of the main while loop.
In all propositions of this section up to this point, T0 has been used to denote the point in
the algorithm’s execution at the end of the main while loop. In Proposition 5.5.8 we change
this notation to Tend. This is done in order for T0, T0.5, T1 and Tend to denote times that are
ordered chronologically.

Proposition 5.5.8. Let Tend denote the point in Algorithm 5.2’s execution at the end of the

main while loop. Then the following statements are true.

1. If a lecturer lk is full, then a student si worse than or equal to lk’s worst assignee(s)

cannot subsequently become assigned to a project pj offered by lk unless this occurs

during the main while loop and lk is precarious when si applies to pj .

5.5. 3
2
-approximation algorithm correctness proofs 118

2. If a project pj offered by lk is full and non-precarious before Tend, then a student si
worse than or equal to lk’s worst ranked assignee(s) in M(pj) cannot subsequently

become assigned to pj before Tend.

Proof. We deal with each case separately.

1. Let T0 be a point of the algorithm’s execution, mentioned in the statement of the pro-
postion, where lk is full. Let T1 be the first point after T0 where a student si worse than
or equal to lk’s worst assignee(s) applies to pj . As this is the first such point, it is not
possible for M(lk) at T1 to have students of lower rank than existed in M(lk) at T0.

It is clear that in Algorithm 5.4, students assigned to a particular lecturer cannot
change, hence we concentrate only on the main while loop of Algorithm 5.2. Since
lk is full at T0, lk must be full at T1 since a pair may only be added and taken away
from the same project, or from different projects offered by the same lecturer. Assume
lk is non-precarious at T1. Either pj is full or undersubscribed. Suppose pj is full.
Since lk is non-precarious, pj is also non-precarious by definition. But then, since lk
does not meta-prefer si to a worst assignee in M(lk), the conditions on Line 17 cannot
be satisfied and so si cannot become assigned to pj . Now, assume that pj is under-
subscribed. Since lk is full, non-precarious, and does not meta-prefer si to a worst
assignee in M(lk), the conditions on Line 8 are also not satisfied and so si cannot be-
come assigned to pj . Since it is not possible for a student si worse than or equal to lk’s
worst assignee(s) at T0 to become assigned to pj when this application happens for the
first time, it is easy to extend this to any subsequent occurence during the main while
loop.

If on the other hand, lk is precarious at T1, since lk is also full at T1, it is easy to see
that si may become assigned to pj (if either pj is undersubscribed or pj is full and
precarious).

2. Similar to above, let T0 be a point of the algorithm’s execution, mentioned in the
statement of the propostion, where pj is full and non-precarious. Let T1 be the first
point after T0 and before Tend where a student si worse than or equal to lk’s worst
assignee(s) in M(pj) applies to pj . As this is the first such point, it is not possible for
M(pj) at T1 to have students of lower rank than existed in M(pj) at T0. This result can
clearly be extended to apply not only to T1, but also to any point after T0 and before
T1.

Since pj is full and non-precarious at T0, it must also be non-precarious at all future
points by Proposition 5.5.5. At T1 either pj is full or undersubscribed.

5.5. 3
2
-approximation algorithm correctness proofs 119

• If pj is full at T1, then since it is also non-precarious and there cannot be lower
ranked students in M(pj) at T1 than there were in M(pj) at T0, the conditions on
Line 17 cannot be satisfied and so si cannot become assigned to pj .

• If pj is undersubscribed at T1, then it first became undersubscribed at some point
after T0 and before T1. Let T0.5 be the point just prior to pj becoming under-
subscribed. At T0.5, lk must be full since pj can only become undersubscribed
on Line 15. Let (si′ , pj) be the pair that is removed from the matching just after
T0.5. We know pj is non-precarious after T0 and so pair (si′ , pj) is removed as
a non-precarious pair, by definition. But, since (si′ , pj) is non-precarious, it can
only have been removed just after T0.5 (on Line 15) if lk is non-precarious and
si′ was not only a worst assignee in M(pj) but also in M(lk). This means that
a worst assignee in M(lk) at T0.5 is of equal rank to a worst assignee in M(pj)

at T0.5 and cannot be worse than a worst assignee in M(pj) at T0 (by the result
given at the start of this case). From this we can deduce that si is worse than
or equal to lk’s worst assignee(s) in M(lk) at T0.5. Thus, by the proof of Case 1
above, since lk was full and non-precarious at T0.5 with si worse than or equal to
lk’s worst assignee(s) in M(lk) at T0.5, si cannot subsequently become assigned
to pj at T1. Since it is not possible for a student si worse than or equal to lk’s
worst assignee(s) in M(pj) at T0 to become assigned to pj when this application
happens for the first time before Tend, it is easy to extend this to any subsequent
occurence at any time before Tend.

Therefore each case is proved.

5.5.3 Stability

In this section we present several results building up to Theorem 5.5.13 which shows that
Algorithm Max-SPA-ST-Approx always produces a stable matching.

First, in Lemma 5.5.9, we show that after the main while loop of Algorithm 5.2, only block-
ing pairs of type (3bi) can exist relative to M .

Lemma 5.5.9. Let M1 denote the matching constructed immediately after the main while

loop in Algorithm 5.2 has completed and let T1 denote this point in the algorithm’s execution.

At T1, no blocking pair of type (3a), (3bii) or (3c) can exist relative to M1.

Proof. Assume for contradiction that (sb1 , pb2) is a blocking pair of M1 of type (3a), (3bii)

or (3c). Let lb3 be the lecturer who offers pb2 .

It must be the case that in M1, sb1 is either assigned to a project of lower rank than pb2 or is
assigned to no project. Therefore, sb1 must have removed pb2 from their preference list during

5.5. 3
2
-approximation algorithm correctness proofs 120

the main while loop of Algorithm 5.2. Let M0 denote the matching constructed immediately
before pb2 was first removed from sb1’s list and let T0 denote this point in the algorithm’s
execution. We know that pb2 cannot be fully available at T0 (otherwise (sb1 , pb2) would have
been added to M0) and cannot subsequently become fully available by Proposition 5.5.3.
There are three places where pb2 could be removed from sb1’s list, namely Lines 13, 22 and
27. We look at each type of blocking pair in turn.

• (3a) - Assume we have a blocking pair of type (3a) in M1. Then, pb2 and lb3 are both
undersubscribed (and hence pb2 is fully available) inM1. But this contradicts the above
statement that pb2 cannot be fully available after T0.

• (3bii) & (3c) - Assume we have a blocking pair of type (3bii) or (3c) in M1. At T0,
pb2 is not fully available and so either pb2 is undersubscribed with lb3 being full, or pb2
is full.

– If pb2 was undersubscribed and lb3 was full at T0 then lb3 cannot have been pre-
carious (since sb1 is about to remove pb2 from their list) and by Proposition 5.5.5,
cannot subsequently become precarious. By Proposition 5.5.8, lb3 cannot subse-
quently accept a student ranked lower than a worst student inM0(lb3). Also either
sb1 is a worst assignee in M0(lb3) (Line 13), or lb3 ranks sb1 at least as badly as
a worst student in M0(lb3) (Line 27). Lecturer lb3 must remain full for the rest
of the algorithm since if a student is removed from a project offered by lb3 then
they are immediately replaced. Therefore lb3 must be full in M1, and since lb3
cannot have accepted a worse ranked student than sb1 after T0, (sb1 , pb2) cannot
be a blocking pair of M1 of type (3bii) or (3c).

– Instead assume at T0 that pb2 is full inM0. As sb1 is about to remove pb2 , we know
pb2 cannot be precarious, and by Proposition 5.5.5, cannot subsequently become
precarious. Either sb1 is a worst assignee in M0(pb2) (Line 22), or lb3 ranks sb1 at
least as badly as a worst student in M0(pb2) (Line 27).

As pb2 is full and non-precarious, by Proposition 5.5.8, pj cannot accept a worse
student than already exists in M(pb2) at T0. If pb2 is full at T1, then clearly
(sb1 , pb2) cannot block M1. So assume pb2 becomes undersubscribed at some
point between T0 and T1 for the first time, say at T0.5. Since pb2 is non-precarious,
all pairs inM associated with pb2 are also non-precarious. Therefore pb2 can only
become undersubscribed at T0.5 if lb3 is full and there is a student si who assigns
to another project pj that lb3 offers, where si is meta-preferred to a worst student
in M0(lb3). This worst student must also be a worst student in M0(pb2) since we
are removing from M0 a pair associated with pb2 . But then sb1 must be ranked
at least as badly as a worst student in M0(lb3). Using similar reasoning to the

5.5. 3
2
-approximation algorithm correctness proofs 121

previous case, lb3 must be full in M1, non-precarious, and since lb3 cannot have
accepted a worse ranked student than sb1 after T0.5, (sb1 , pb2) cannot be a blocking
pair of M1 of type (3bii) or (3c).

Hence it is not possible for (sb1 , pb2) to be a blocking pair of M of type (3a), (3bii) or (3c)

after the main while loop.

Let pj be a project, where lk offers pj . Propositions 5.5.10 and 5.5.11 show that from the end
of the main while loop to the end of the execution of Algorithm 5.2, if (si, pj) is a blocking
pair of type (3bi), then si must be one of the worst students in M(lk).

Proposition 5.5.10. Let M1 be the matching constructed immediately at the end of the main

while loop of Algorithm 5.2’s execution, and let T1 denote this point in the algorithm’s ex-

ecution. At T1, for each blocking pair (si, pj′) of type (3bi), si must be one of the worst

assignees of M1(lk), where lk offers pj′ .

Proof. Since (si, pj′) is a blocking pair of type (3bi), we know that si is assigned to another
project, say pj , of lk’s in M1, where si prefers pj′ to pj .

During the main while loop’s execution, student si must have removed pj′ from their prefer-
ence list in order to eventually assign to pj . We note that although si may be in either phase,
si must have removed pj′ from their preference list in the same phase that si assigned to pj
(also the same phase si is in at T1). For the remainder of this proof, we discuss removal of
pj′ from si’s preference list in the context of this phase. Student si’s removal of pj′ could
only happen if pj′ was non-precarious at this point. By Proposition 5.5.5, since pj′ or lk are
full, pj′ cannot subsequently become precarious. Let the matching constructed immediately
before this removal be denoted by M0 and let T0 denote this point in the algorithm’s execu-
tion. Project pj′ was either full or undersubscribed at T0. We show in the former case that, si
is one of the worst students in M1(lk), and that the latter case leads to a contradiction.

• Suppose pj′ was full at T0. Then as pj′ is non-precarious, pj′ cannot subsequently be
assigned a student worse than the worst assignee inM0(pj′) up until T1, by Proposition
5.5.8. Since si removed pj′ from their list while pj′ was full we know that either si is a
worst assignee in M0(pj′) (Line 22), or lk ranks si at least as badly as a worst student
in M0(pj′) (Line 27). Between T0 and T1, si assigns to the project pj , at a worse rank
than pj′ in si’s list, where pj is also offered by lk.

Now, we know that pj′ becomes undersubscribed by T1 and so it must be the case
that there is a point T0.5 between T0 and T1, such that another student si′ assigns to a
project (not pj′) of lk’s which removes pair (si′′ , pj′) from the matching constructed just
before that removal, denoted by M0.5. Let T0.5 be the first point at which pj′ becomes

5.5. 3
2
-approximation algorithm correctness proofs 122

undersubscribed after T0. Lecturer lk must be full at this point since the addition of si′

removes a student (namely si′′) from a different project (namely pj′). Also, lecturer lk
cannot have been precarious, otherwise pj′ would have been identified as a precarious
project at Line 10, but we know pj′ cannot have been precarious after T0. So si′′ must
have been a worst assignee in M0.5(lk) and therefore M0.5(pj′). From the beginning of
this bullet point, we know that the worst student in M0.5(pj′) can be no worse than the
worst student in M0(pj′). Thus since student si cannot have changed phase from point
T0, si must be either a worst student in M0.5(lk), or be as bad as a worst student in
M0.5(lk). By Propositions 5.5.5 and 5.5.8, since lk is full and non-precarious at T0.5, lk
cannot be assigned a worse student than si between T0.5 to T1, and so as si is assigned
to lk at T1 and si remains in the same phase until T1, then they must be one of the worst
students in M1(lk).

• Suppose then that pj′ is undersubscribed at T0. Since a preference element is being
removed, lk must have been full, non-precarious and either si is a worst assignee in
M0(lk) (Line 13), or lk ranks si at least as badly as a worst student in M0(lk) (Line
27). But then by Propositions 5.5.5 and 5.5.8, lk must have remained non-precarious
until T1 and been unable to assign to a student worse than or equal to si, including si
in the same phase, a contradiction.

Therefore, for any blocking pair (si, pj′) of type (3bi) of M1, si must be one of the worst
students in M1(lk).

Proposition 5.5.11. In Algorithm 5.4, if a blocking pair (si′ , pj) of type (3bi) is created (in

the process of removing a different blocking pair of type (3bi)) then si′ must be one of the

worst students in M2(lk), where lk is the lecturer who offers pj and M2 is the matching

constructed immediately after this removal occurs.

Proof. Let M0 denote the matching at the end of the main while loop of Algorithm 5.2, and
let T0 denote this point in the algorithm’s execution. Assume that during Algorithm 5.4’s
execution, the first promotion to reveal a blocking pair (si′ , pj) of type (3bi) occurs such that
si′ is not a worst student in M1(lk). Let M1 be the matching constructed just before this
promotion occurs. Suppose the promotion involves student si moving from a less preferred
pj to a more preferred project pj′ . It is clear that in the removal of blocking pairs of type
(3bi) there is no change in regards to which students are assigned to projects of lk, therefore
the same students are assigned to each lecturer in M0, M1 and M2. By Proposition 5.5.10, si
is and remains one of the worst assignees of lk in M0, M1 and M2. Since si′ is not a worst
assignee in M2(lk), lk must prefer si′ to si. But this would mean (si′ , pj) was a blocking
pair of type (3c) in M0 if pj were full or (3bii) in M0 if pj were undersubscribed, both a
contradiction to Lemma 5.5.9.

5.5. 3
2
-approximation algorithm correctness proofs 123

In Proposition 5.5.12 we show that only blocking pairs of type (3bi) may be created in M
after the main while loop of Algorithm 5.2.

Proposition 5.5.12. It is not possible in Algorithm 5.4’s execution, for a blocking pair of any

type other than (3bi) to be created.

Proof. LetM0 denote the matching constructed immediately after the main while loop of Al-
gorithm 5.2 terminates and let T0 denote this point in the algorithm’s execution. By Lemma
5.5.9, only blocking pairs of type (3bi) of M0 may exist at T0 therefore we restrict our at-
tention to the removal of such pairs. Assume for a contradiction that during Algorithm 5.4’s
execution, the first promotion to reveal a blocking pair of type not equal to (3bi) occurs.
Let M1 (respectively M2) be the matching constructed just before (respectively after) this
promotion occurs with T1 (respectively T2) denoting this point in the algorithm’s execution.
Suppose that this promotion involves student si being promoted from project pj to project
pj′ as pair (si, pj′) is a blocking pair of M1 of type (3bi). Since (si, pj′) is a blocking pair
of M1 of type (3bi) we know that pj and pj′ are both offered by the same lecturer, say lk.
Assume that this promotion has now revealed a blocking pair (si′ , pj) of type (3a), (3bii) or
(3c) in M2. We look at each case in turn.

• (3a) - Since in M1, (si, pj′) was a blocking pair of type (3bi) we know that lk is full
at T1. The promotion involves moving si from one project offered by lk to another,
therefore at T2, lk must be full and so pj cannot be involved in a blocking pair of type
(3a) in M2, a contradiction.

• (3bii) - Suppose (si′ , pj) is a blocking pair of type (3bii) in M2. Since it is of type
(3bii), lk must prefer si′ to a worst assignee in M2(lk) (and consequently M1(lk) as
students do not change lecturer). If pj was undersubscribed at T1 then (si′ , pj) would
have constituted a blocking pair of type (3bii), a contradiction. Therefore pj must have
been full in M1. We know that (si, pj) ∈ M1 and that si is a worst assignee in M1(lk)

by Proposition 5.5.10 and 5.5.11, therefore lk prefers si′ to si. It follows that (si′ , pj)

would have constituted a blocking pair in M1 of type (3c), a contradiction to the fact
that no blocking pair of any type other than (3bi) was revealed prior to T2.

• (3c) - Suppose finally that (si′ , pj) is a blocking pair of M2 of type (3c). But blocking
pairs of type (3c) require pj to be full in M2 which it cannot be since (si, pj) has been
removed just before T2, hence pj cannot be involved in a blocking pair of type (3c).

Therefore it is not possible for a blocking pair of type (3a), (3bii) or (3c) to be created during
the first promotion of a student, and hence any promotion.

5.5. 3
2
-approximation algorithm correctness proofs 124

Finally, Theorem 5.5.13 proves that any matching produced by Algorithm Max-SPA-ST-
Approx is stable.

Theorem 5.5.13. Any matching produced by Algorithm 5.2 must be stable.

Proof. Let M0 be the matching constructed immediately after the termination of the main
while loop of Algorithm 5.2 and let T0 denote this stage of the algorithm. Recall that by
Lemma 5.5.9, only blocking pairs of type (3bi) may exist relative to M0. Also, by Lemma
5.5.12, no blocking pair of any other type can exist relative to the matching constructed after
T0.

Algorithm 5.4 systematically removes blocking pairs of type (3bi) in a series of student
promotions. Each promotion improves the outcome for a student.

Therefore there are no blocking pairs of any type in the finalised matching Ms and so Ms is
stable.

Since this proof relies only on the fact that pb2 is removed from sb1’s list once for (sb1 , pb2)

not to become a blocking pair, we can infer that if we allowed students to only iterate once
through their preference preference list rather than twice, this would still result in a stable
matching.

5.5.4 Time complexity and termination

In this section we prove that Algorithm Max-SPA-ST-Approx runs in linear time with re-
spect to the total length of student preference lists.

First, in Proposition 5.5.14, we show that during the main while loop each student may only
apply to a project on their preference list a maximum of three times.

Proposition 5.5.14. The maximum number of times a student si can apply to a project pj on

their preference list during the main while loop of Algorithm 5.2 is three.

Proof. First we note that as soon as si removes pj from their preference list once during Al-
gorithm 5.2’s execution, (si, pj) cannot subsequently become a precarious pair by definition
(since a precarious pair must be assigned in phase 1).

Focussing on the main while loop, assume for some iteration, that phase 1 student si applies
to project pj on their preference list. Either (si, pj) is added to the matching being built M ,
or pj is removed from si’s list. If pj is removed from si’s list then si may still apply to project
pj in phase 2 but as noted above (si, pj) cannot become a precarious pair.

Assume instead that (si, pj) is added to M . If it remains in M until the algorithm completes
then si cannot apply to pj again. So assume that (si, pj) is removed from M at some point

5.5. 3
2
-approximation algorithm correctness proofs 125

due to another pair being added toM . If (si, pj) was non-precarious at the point it is removed
from M then si removes pj from their list and the next time si could apply to pj is when si
is in phase 2 when as above (si, pj) cannot become a precarious pair.

Assume therefore that (si, pj) was precarious when removed from M . Then si does not
remove pj from their list and si can again apply to pj during phase 1. Note that if (si, pj) is
re-added to M it must be as a non-precarious pair. This is because, using similar reasoning
that was used in Proposition 5.5.5, at the point at which si reapplies to pj they must have
exhausted all fully available projects at the head of their list, therefore (si, pj) cannot again
become precarious. Therefore, si can apply to pj a maximum of three times during the
execution of the while loop: at most twice while si is in phase 1 (twice only if (si, pj) is
removed as a precarious pair) and at most once in phase 2.

Next, using the data structures summarised in Figure 5.4, Lemma 5.5.15 proves that all
operations inside the main while loop of Algorithm 5.2 run in constant time.

Lemma 5.5.15. All operations inside the main while loop of Algorithm 5.2 run in constant

time.

Proof. The data structures required are described below and are summarised in Figure 5.4.
For initialisation purposes, each student, project and lecturer has a list of length n2, n1 and
n1 respectively, each entry of which requires O(1) space. In order to not exceed a time
complexity of order the sum of lengths of preference lists, a process of virtual initialisation
is used on these data structures [8, p. 149].

Student data structures. For each student a doubly-linked list of (project, rank) tuples
embedded in an array, prefList, stores their preference list in order of rank, representing
the undeleted entries. A small example is shown in Figure 5.4 with p3, p2 and p1 all of rank
1 on si’s preference list. Entries may be deleted from this array; a copy of this list prior
to any deletions being carried out is retained in order to allow a second iteration through a
student’s preference list, if they move into phase 2. An array projPosition of length
n2 retains links to the position of (project, rank) tuples in prefList, allowing a constant
time removal of projects from prefList. An integer variable associated with each student
stores which phase this student is in. Examples for these final two data structures are also
shown in Figure 5.4.

Project data structures. Each project has a link to their supervising lecturer. An array,
projectedPrefList stores the projected preference list of lk for pj in the form of (stu-
dent, rank, boolean) tuples. As an example, suppose pj has a projected preference list starting
with s7 at rank 1, s4 at rank 1 and s6 at rank 2 as is shown in Figure 5.4. The boolean values
indicate which student-project pairs are currently in the matching.

5.5. 3
2
-approximation algorithm correctness proofs 126

Student si

prefList, (project, rank) tuples(p3, 1) (p2, 1) (p1, 1)

first second

projPosition3 2 1

phase of si1

firstFin, True if first pointer reaches end of tieF

secondFin, True if second pointer reaches end of tieF

Project pj

projectedPrefList,
(student, rank, boolean) tuples

last

(s7, 1, T) (s4, 1, F) (s6, 2, T)

studentPositionsnull 5 null

precariousListnull null null

supportListnull null s3

lecturer offering pjl5

number of allocations in M2

Lecturer lk
prefList, (student, rank, boolean) tuples(s8, 1, F) (s2, 2, T) (s3, 2, T)

last

studentPositionsnull 2 3

precariousProjListnull p2 null

number of allocations in M3

MatchingM

matchArray, cell i− 1 contains pj if (si, pj) ∈M or null if si is unassigned
null p6 null

Key

boolean/int/link/tuple

Array

Doubly linked list embedded in
an array

Figure 5.4: Data structures guide for Lemma 5.5.15.

5.5. 3
2
-approximation algorithm correctness proofs 127

Once a project is full and non-precarious it cannot accept a worse student than it already has
for the remainder of the algorithm, according to Proposition 5.5.5. Assume pj is full and non-
precarious. Let the worst student assigned to pj be given by sw. We retain a pointer, last,
which points to the rightmost student at the same rank as sw in pj’s projectedPrefList.
This pointer must move from right to left in a linear fashion (moving up in ranks) given the
above proposition.

During the course of the algorithm, we may need to remove the worst student according to
lk from M(pj). It is possible that there are two or more students who are worst assignees
(according to rank) with some being in phase 1 and some in phase 2. In order to ensure
that we prioritise the removal of phase 1 students, two pointers are added for each entry
in projectedPrefList, which point to the head of a phase 1 and a phase 2 doubly-
linked list associated with that tie embedded in the projectedPrefList array (this data
structure is not shown in Figure 5.4). Adding or removing a phase 1 or 2 student to either
list takes constant time, as they do not need to be kept in order. Then, un-assigning a student
requires a check to be made in the tie associated with the worst position (found using last),
in order to prioritise a phase 1 student’s removal. In total this takes constant time. Note that
a student can only change phase if they are not allocated and therefore updating an allocated
student’s phase in these lists is not necessary unless they have just been added.

Each project also contains a doubly-linked list embedded in an array of students, denoted
by precariousList, containing students who have formed a precarious pair with this
project. In the example in Figure 5.4, pj is non-precarious and so no students form a precar-
ious pair with pj . Adding to and removing from this list takes constant time if we assume
that si is stored at index i − 1. A project pj supports a student si in being precarious if
(si, pj′) ∈ M and pj is the first fully available project at the same rank as pj′ in si’s list.
Then, a doubly-linked list embedded in an array of students, supportList, stores the stu-
dents for which pj gives their support. As before, adding to and removing from this list takes
constant time. A counter stores the number of students assigned to pj in M .

Lecturer data structures. For each lecturer an array of (student, rank, boolean) tuples,
prefList, stores their preference list in order of rank, with a True value stored in the ith
boolean if student si is assigned to a project of lk’s. Figure 5.4 shows an example with s8 not
assigned to lk at rank 1 and s2 and s3 both assigned at rank 2. Each lecturer also has an array
of length n1, studentPositions which retains links to the position of (student, rank,
boolean) tuples in lk’s prefList, and a counter stores the number of students assigned to
lk in M . A doubly-linked list embedded in an array of projects, precariousProjList,
stores the projects offered by lk that are precarious, where project pj is stored at index j − 1

in this list if it is precarious. Figure 5.4 shows p2 being a precarious project of lk.

Similar to projects, by Proposition 5.5.5, once a lecturer is full and non-precarious they

5.5. 3
2
-approximation algorithm correctness proofs 128

cannot accept a worse student than they already have for the remainder of the algorithm.
Assume lk is full and non-precarious. Using similar data structures described in the Project
Data Structures section above we are able to find lk’s worst assigned student in constant time.

Student pointers. A student si retains two pointers for the project(s) tied at the head of
their list. One pointer first stores the first fully available project when iterating from
left to right, and second stores the second fully available project. If first (respectively
second) reaches the end of the tie, then a boolean firstFin (respectively secondFin)
is set to True. For each iteration of the main while loop of Algorithm 5.2, each student si
first seeks a project at the head of their list that is fully available. This will be precisely the
project pj that first points to. Then if second has not reached the end of the tie, (si, pj)

(if added to the matching) is precarious and the project that second points to, pj′ , supports
pj . If however, secondFin is set to True, then (si, pj) (if added to the matching) is non-
precarious. Finally, if firstFin is set to True, then the leftmost project at the head of si’s
list is a favourite project, with (si, pj) also being unable to become precarious. Proposition
5.5.14 shows that maximum number of applications a student can make to a project on their
preference list is 3. At most twice in phase 1 (twice if removed as a precarious pair) and once
in phase 2.

During phase 2 there are no fully available projects on si’s list since si must have applied
and been rejected (in some way) from every project on their preference list at least once
already. Therefore, the first and second pointers are not required in phase 2. During
phase 1 the the first and second pointers are only required to iterate once over each
tie as described above. Hence, the maximum number of times a student’s list is iterated
over is 4; once each for the two pointers first and second, once again after first and
second have reached the end of the tie at the head of a student’s list (the student may have
retained projects at the head of their list after this point if the projects were precarious), and
finally once during phase 2.

Matching data structures. The current matching is stored in an array of cells matchArray
where cell i− 1 contains project pj if (si, pj) ∈ M or null otherwise. Figure 5.4 shows and
example with student s2 being assigned to project p6.

Processes (in the order encountered in Algorithm 5.2):

Let lecturer lk offer project pj .

1. A student si applies to a favourite project: if si’s FirstFin is set to True then there
are no fully available projects at the head of si’s list, and a favourite project of si will
be the leftmost project. If however, FirstFin is False then there are fully available
projects at the head of their list and a favourite project of si is pointed to by first,
which is retrievable in constant time.

5.5. 3
2
-approximation algorithm correctness proofs 129

2. Deciding if a project pj is undersubscribed or full or deciding if a lecturer lk is un-

dersubscribed or full: Using the counters described above a comparison can be made
between pj’s capacity and their current number of allocations. A similar comparison
can be made for lk. Both can be achieved in constant time.

3. Deciding if project pj is fully available: pj would not be fully available if either pj is
full or lk is full. Therefore a comparison of the number of allocations for pj and lk and
their respective capacities is required. Again this can be achieved in constant time.

4. Adding a pair (si, pj) to M : Project pj is placed in the i− 1’th cell of matchArray
and pj and lk’s allocation counters are incremented. Project pj’s projectedPrefList
and lecturer lk’s prefList booleans are updated in constant time using their asso-
ciated studentPositions data structures. Each tuple in these lists has a link to
the head of phase 1 and phase 2 lists for their tie. When the pair is added the tuple is
added to either the phase 1 or phase 2 list. If (si, pj) is precarious then si is added to
pj’s precariousList and the project pointed to by second, pj′ adds si to their
supportList. If pj has just changed from being non-precarious to precarious then
lk adds pj to their precariousProjList. If the addition of (si, pj) to M means
that pj goes from being fully available to not being fully available then we need to
ensure that other students who rely on pj as their support are updated. Therefore pj
alerts each student on their supportList that they are no longer to be relied upon as
a fully available project. This triggers each of those students to update their second
pointers. The time required for this can be attributed to the movement of second
pointers as noted earlier. After being alerted, some other pair in M may stop being
precarious, but any changes can be conducted in constant time as described above.
If on adding pair (si, pj), pj has now become full and non-precarious then the last
pointer will move from right to left over projectedPrefList until it reaches the
end of a tie whose phase 1 and phase 2 lists are non-empty. From this point on last
is only updated upon removing a pair from M (Point 8).

5. Deciding if lk is precarious, and returning a precarious project if one exists: Checking
whether precariousProjList is empty for lk is a simple process that takes con-
stant time. Retrieving a precarious pair should one exist requires selection of the first
student from lk’s precariousProjList and can be done in constant time.

6. Finding a worst assignee of lk and deciding if lk meta-prefers si to this worst assignee:
This operation only needs to be executed if lk is full and non-precarious. In that sit-
uation lk’s last pointer will point to the rightmost position in a tie in prefList

such that lk’s current worst student sw is assigned at the same rank. Then as previously
discussed, all that is required is to check the links to phase 1 and phase 2 students for

5.5. 3
2
-approximation algorithm correctness proofs 130

this tie and return a phase 1 student if one exists, or phase 2 student if not. This can
be conducted in constant time. Deciding if lk meta-prefers si to sw can also be done in
constant time by comparing rank and phase.

7. Removing a preference list entry from si’s list: This process is shown in Algorithm 5.3
which runs in constant time, since we can find a specific project pj in si’s prefList
using the projPosition array.

8. Removing a pair (si, pj) from M : The i− 1’th cell of matchArray is set to null, and
pj and lk’s allocation counters are decremented. Project pj’s projectedPrefList
and lecturer lk’s prefList booleans are updated in constant time. The tuples asso-
ciated with si in these lists are removed from their phase 1 or phase 2 list in constant
time. If a pair (si, pj) is removed from M , then this is either because pj or lk is full.
By Proposition 5.5.3, pj cannot subsequently become fully available. Thus, the re-
moval of a pair cannot change pj’s fully available status. All that is required then is to
check whether (si, pj) was precarious, and update pj’s precariousList and lk’s
precariousProjList. If on removing pair (si, pj), the last pointer now points
to a tie with empty phase 1 and phase 2 lists, last needs to be updated and accord-
ingly moves from right to left until it reaches the end of a tie with a non-empty phase
1 or phase 2 list.

9. Deciding if pj is precarious, and returning a precarious pair if one exists: Similar to
Point 5 above but using the precariousList of pj .

10. Finding a worst assignee of pj according to lk and deciding if lk meta-prefers si to

this worst assignee: Similar to Point 6 above, this operation is only required if pj is
full and non-precarious, at which point pj’s last pointer will point to the rightmost
position in a tie in projectedPrefList such that lk’s current worst student assigned
to pj , sw is assigned at the same rank. As above retrieving sw and comparing its rank
and phase with si takes constant time.

Therefore, all operations inside the main while loop of Algorithm 5.2 run in constant time.

Algorithm 5.5 is a more detailed version of Algorithm 5.4, indicating how the operations in
Algorithm 5.4 can be implemented efficiently. Proposition 5.5.16 shows that Algorithm 5.5
runs in linear time.

Proposition 5.5.16. The time complexity of Algorithm 5.5 is O(m) where m is the total

length of student preference lists.

5.5. 3
2
-approximation algorithm correctness proofs 131

Algorithm 5.5 Promote-Students(M), subroutine for Algorithm 5.2 (detailed view). Re-
moves all blocking pairs of type (3bi).
Require: SPA-ST instance I and matching M which does not contain blocking pairs of type

(3a), (3bii) or (3c).
Ensure: Return a stable matching M .

1: Create data structures as described in Proposition 5.5.16
2: while S 6= ∅ do
3: Pop pj from stack S
4: Remove the first student si from list ρj
5: Let pk = M(si)
6: if si prefers pj to pk then . pj is undersubscribed, si is assigned and prefers pj to
M(si)

7: M ←M\{(si, pk)}
8: M ←M ∪ {(si, pj)}
9: Let ρk be the list of student and rank tuples associated with project pk and let

boolean βk indicate whether M(si) is on stack S
10: if ρk 6= ∅ then
11: Push pk onto stack S if it is not already on S . Using βk.
12: end if
13: end if
14: if ρj 6= ∅ and pj is undersubscribed then
15: Push pj onto stack S . pj cannot currently be on S
16: end if
17: end while
18: return M

Proof. Abraham et al. [4] describes the process of a sequence of promotions for houses in
HA in order to return a trade-in-free matching. A similar process is described here to remove
all blocking pairs of type (3bi). We create the following data structures.

• A linked list ρj of students si for each project pj such that si is assigned in M and
finds pj acceptable. We may also start by assuming that ρj involves only students who
prefer pj to M(si), however the time complexity is unaffected by this.

• A ranking list ri for each student si built as an array such that ri = j contains the rank
of pj for student si;

• A stack S of undersubscribed projects pj , such that ρj is non-empty, is created;

• A variable βj for each project pj which records whether pj is already in S.

These data structures can be initialised in O(m) time where m is the total length of student
preference lists.

Execution of Algorithm 5.5 proceeds as follows. For each iteration of the while loop a
project pj is taken from stack S. Project pj must be undersubscribed and have non-empty

5.5. 3
2
-approximation algorithm correctness proofs 132

list ρj . The first student si from ρj , is removed and if si would prefer to be assigned to pj
than pk = M(si) (found by comparing ranking list entries for pj and pk) then we remove
pair (si, pk) from M and add (si, pj). Now, pk is certainly an undersubscribed project and it
is added to S (unless it already exists on S). Whether or not (si, pj) is added to M , pj may
still be undersubscribed. If ρj is non-empty and pj is undersubscribed, then pj is added to S.

With each iteration we remove a tuple from some project’s ρ list. These lists must be finite
because preference lists are finite and therefore Algorithm 5.5 will terminate with empty S.
It is clear that Algorithm 5.5 will take O(m) time where m is the total length of student
preference lists.

Finally, Theorem 5.5.17 establishes that Algorithm Max-SPA-ST-Approx runs in linear time
with respect to the total length of student preference lists.

Theorem 5.5.17. Algorithm 5.2 always terminates and runs in linear time with respect to

the total length of student preference lists.

Proof. By Proposition 5.5.14 each student can apply to a project on their preference list a
maximum of three times during the main while loop of Algorithm 5.2. Since all operations
within this while loop run in constant time by Proposition 5.5.15, this part of the algorithm
must run in O(3m) = O(m) time, where m is the total length of student preference lists.
Proposition 5.5.16 shows that Algorithm 5.5 also runs in O(m) time, therefore so must Al-
gorithm 5.2. Finally, since student preference lists are of finite length, Algorithm 5.2 must
terminate.

5.5.5 Performance guarantee

5.5.5.1 Introduction

In Section 5.5.3 we showed that Algorithm Max-SPA-ST-Approx always produces a stable
matching. In this section we show that any stable matching produced by this algorithm is
always at least two-thirds of the size of a maximum stable matching.

We begin in Section 5.5.5.2 by giving preliminary definitions of an underlying graph and
mapped graph of an instance of SPA-ST, which are used throughout the proofs in this section.
Both the underlying graph and the mapped graph are illustrated in an example in Section
5.5.5.3. In Section 5.5.5.4 we move on to look at the possible structures that may exist in
mapped graphs. Finally, using these structures, in Section 5.5.5.5 we prove that Algorithm
Max-SPA-ST-Approx has a performance guarantee of 3

2
.

5.5. 3
2
-approximation algorithm correctness proofs 133

5.5.5.2 Preliminary definitions

The underlying graph G of an SPA-ST instance I consists of sets of student, project and
lecturer vertices. Edges exist between a student vertex si and a project vertex pj if si finds pj
acceptable. Edges exist between a project vertex pj and lecturer vertex lk if lk offers pj .

We now introduce the notion of a mapped graph G′ of the underlying graph G of the SPA-
ST instance I . This graph is not created in Algorithm 5.2, but is intended only to make
it easier to prove the performance guarantee in Section 5.5.5.5. The mapped graph G′ is
created in the following way. Let all student vertices remain unchanged. Let M be the
matching found by Algorithm 5.2 for instance I and let Mopt be a maximum stable matching
in I . For each lecturer vertex lk we create multiple cloned vertices l1k . . . l

rk
k , where rk =

dk − |M(lk) ∩Mopt(lk)| and dk is lk’s capacity. In G there are edges between students and
projects, and projects and lecturers, whereas G′ contains only edges between students and
lecturer clones.

An (si, pj) edge in G corresponds to an (si, l
r
k) edge in G′, where lrk denotes the rth lecturer

clone of lecturer lk. Edges in G′ are given by M ′ and M ′
opt, defined below. M ′

opt edges are
defined as follows. For each lecturer lk, if

⋃
pj′∈Pk

{Mopt(pj′)\M(pj′)} = {si1 , ..., sit} then
add (sir , l

r
k), (1 ≤ r ≤ t) toM ′

opt, the mapped version ofMopt inG′. M ′ edges are then added
using Algorithm 5.6. By using this algorithm we ensure that where possible, pairs of edges
in M ′ and M ′

opt involving the same project are assigned to the same lecturer clone in G′.
According to Algorithm 5.6 we do the following. A copy of M\Mopt is created and denoted
M0 which intuitively contains the set of student-project pairs that have not yet been mapped.
L0 is a copy of the set of all lecturer clone vertices, and L′0 is the empty set. Intuitively, L′0
will collect up any remaining lecturer clones, after pairs of edges in M ′ and M ′

opt involving
the same project are dealt with. For each lecturer clone lrk ∈ L0, if there is an edge (si, l

r
k) in

M ′
opt for some si then we let pj be the project assigned to si in Mopt. If there is not, then lrk

is added to L′0. Assuming (si, l
r
k) ∈ M ′

opt, then we check if there is an edge (si′ , pj) in M0

for some student si′ . Again, if there is not then lrk is added to L′0. If (si′ , pj) ∈ M0 for some
student si′ then we add edge (si′ , l

r
k) to M ′ and remove (si′ , pj) from M0. After all lecturer

clones have been tested, then for each student-project pair (si, pj) remaining in M0 we find
an unused lecturer clone lrk ∈ L′0, where lk offers pj , and add (si, l

r
k) to M ′. Project vertices

and all other edges are ignored in G′.

5.5.5.3 Example mapped graph

In this section we introduce an example to demonstrate the creation of mapped graph G′

from underlying graph G and matchings M and Mopt. Figure 5.5 shows example instance I4
of SPA-ST.

5.5. 3
2
-approximation algorithm correctness proofs 134

Algorithm 5.6 Create-Mapped(M), obtains a set of edges M ′ for the mapped graph G′

corresponding to edges in M\Mopt.

Require: An instance I of SPA-ST, a stable matching M and maximum stable matching
Mopt of I and a mapped version M ′

opt of Mopt.
Ensure: Return a mapped version M ′ of M\Mopt.

1: M0 ←M\Mopt . where M0 is the working set of student-project pairs in M
2: Let L0 be a copy of the set of all lecturer clones
3: L′0 ← ∅
4: M ′ ← ∅
5: while L0 is non-empty do
6: Remove a lecturer clone lrk from L0

7: if (si, l
r
k) is an edge in M ′

opt for some si then
8: Let pj be the project assigned to si in Mopt

9: if (si′ , pj) is in M0 for some student si′ then
10: M ′ ←M ′ ∪ {(s′i, lrk)}
11: M0 ←M0\{(s′i, pj)}
12: else
13: L′0 ← L′0 ∪ {lrk}
14: end if
15: else
16: L′0 ← L′0 ∪ {lrk}
17: end if
18: end while
19: while M0 is non-empty do
20: Pick some (si, pj) ∈M0

21: M0 ←M0\{(si, pj)}
22: Let lrk be some lecturer clone in L′0, where lk offers pj . lrk must exist since there are

dk − |M(lk) ∩Mopt(lk)| clones for lk
23: L′0 ← L′0\{lrk}
24: M ′ ←M ′ ∪ {(si, lrk)}
25: end while
26: return M ′

Let M = {(s1, p1), (s2, p2), (s3, p3)} and Mopt = {(s1, p1), (s2, p1), (s3, p2), (s4, p3)} be
stable matchings in I . Clearly, Mopt is also a maximum stable matching as all students are
assigned. Figure 5.6a shows the underlying graph G of instance I4. To create the vertices
of G′, student vertices are copied, and multiple lecturer cloned vertices are created. For
lecturer vertices l1 and l2 in G with capacities of 2, we create l11, l

2
1, l

1
2 and l22 in G′. Using the

definition of M ′
opt above, we obtain the edge set M ′

opt = {(s2, l11), (s3, l12), (s4, l22)}. Figure
5.6b shows a part built G′ with all M ′

opt edges added.

Next M ′ is calculated using Algorithm 5.6. A copy of M\Mopt is created and denoted
M0 = {(s2, p2), (s3, p3)}. L0 = {l11, l21, l12, l22} is a copy of the set of all lecturer cloned
vertices, and L′0 is the empty set. We iterate through L0 as follows.

5.5. 3
2
-approximation algorithm correctness proofs 135

Student preferences:
s1: p1 p2 p3
s2: (p1 p2)
s3: (p3 p2)
s4: p3

Project details:
p1: lecturer l1, c1 = 2
p2: lecturer l2, c2 = 1
p3: lecturer l2, c3 = 1

Lecturer preferences:
l1: s1 s2
l2: (s2 s3) s4 s1

d1 = 2
d2 = 2

Figure 5.5: SPA-ST instance I4.

s1

s2

s3

s4

p1

p2

p3

l1

l2

(a) The underlying graph
G. M and Mopt are shown
in bold and non-bold edges
respectively. Edges not in
M ∪Mopt are dashed.

s1

s2

s3

s4

l11

l21

l12

l22

(b) Part-built G′. All
student and lecturer clone
vertices are added. M ′opt =
{(s2, l11), (s3, l12), (s4, l22)}
edges are also shown.

s1

s2

s3

s4

l11

l21

l12

l22

(c) G′ with edge set
M ′ ∪M ′opt, where M ′opt =
{(s2, l11), (s3, l12), (s4, l22)}
(non-bold edges) and
M ′ = {(s2, l12), (s3, l22)}
(bold edges), is shown.

Figure 5.6: Example illustrating the underlying graph G and mapped graph G′ of instance
I4, relative to two stable matchings M and Mopt in G.

• Lecturer clone l11 is removed from L0. Since there is an edge (s2, l
1
1) ∈ M ′

opt and s2 is
assigned p1 in Mopt, but (si′ , pj) /∈M0 for each student si′ , l11 is added to L′0;

• Lecturer clone l21 is removed from L0. As there is no edge (si, l
2
1) ∈ M ′

opt for any
student si, l21 is added to L′0;

• Next lecturer clone l12 is removed from L0. There is an edge (s3, l
1
2) ∈ M ′

opt, s3 is
assigned p2 in Mopt and there is an edge (s2, p2) ∈ M0, hence (s2, l

1
2) is added to M ′

and (s2, p2) is removed from M0;

• Using the same reasoning when the final lecturer clone l22 is removed from L0, (s3, l
2
2)

is also added to M ′ and (s3, p3) is removed from M0.

As M0 is now empty, we do not enter the final while loop on Line 19 of Algorithm 5.6
therefore M ′ is now complete. Figure 5.6c shows the completed mapped graph G′ with edge
set M ′ ∪M ′

opt.

5.5. 3
2
-approximation algorithm correctness proofs 136

5.5.5.4 Components in G′

In this section we define the possible structures that may exist in the mapped graph G′.

An alternating path in G′ is defined as a path that comprises edges in Mopt and in M alter-
nately. A path or alternating path is described as even if there are an even number of edges
in the path, odd otherwise. Finally, an alternating cycle is a sequence of edges in Mopt and
M alternately, which forms a cycle.

A component c in G′ is defined as any maximal connected subgraph in G′. Figure 5.7 shows
the possible component structures that may be found inG′ which are described in more detail
below. Let nc,l and nc,s denote the maximum number of lecturer clone vertices and student
vertices respectively, in some component c ofG′, and let nc = max{nc,l, nc,s}. Notation for a
lecturer clone in component c is defined as lc,r indicating the rth lecturer clone of component
c. Similarly, sc,r indicates the rth student of component c.

Each vertex inG′ is incident to at most oneM ′ edge and at most one M ′
opt edge, meaning ev-

ery component must be a path or cycle comprising alternatingM ′ andM ′
opt edges. Therefore

the structure of each component must have one of the following forms.

(a) An alternating cycle;

(b) An even length alternating path, with lecturer clone end vertices;

(c) An even length alternating path, with student end vertices;

(d) An odd length alternating path, with end edges in M ′;

(e) An odd length alternating path, with end edges in M ′
opt, for nc ≥ 3;

(f) An odd length alternating path, with end edges in M ′
opt, for nc = 2;

(g) An odd length alternating path, with end edges in M ′
opt, for nc = 1;

We wish to show that any stable matching found by Algorithm 5.2 must be at least two-thirds
of the size of Mopt.

5.5.5.5 Proof of the 3
2

performance guarantee

In this section we prove that any stable matching produced by Algorithm Max-SPA-ST-
Approx must be at least two-thirds of the size of a maximum stable matching.

Propositions 5.5.18 and 5.5.19 detail two configurations of components in G′ where we may
infer that a project is undersubscribed in either M or Mopt. The following terminology, used

5.5. 3
2
-approximation algorithm correctness proofs 137

sc,1

sc,2

sc,3

sc,γ

lc,1

lc,2

lc,3

lc,γ

(a)

sc,1

sc,2

sc,µ

lc,1

lc,2

lc,µ

lc,γ

(b)

sc,1

sc,2

sc,µ

sc,γ

lc,1

lc,2

lc,µ

(c)

sc,1

sc,2

sc,γ

lc,1

lc,2

lc,γ

(d)

sc,1

sc,2

sc,γ

lc,1

lc,2

lc,γ

(e) γ ≥ 3

sc,1

sc,2

lc,1

lc,2

(f) γ = 2

sc,1 lc,1

(g) γ = 1

Figure 5.7: Possible component structures in G′ for a component c, where γ = nc, the size
of the component, and µ = γ − 1. M ′ and M ′

opt edges are shown in bold and non-bold,
respectively.

5.5. 3
2
-approximation algorithm correctness proofs 138

in these first two propositions, is now introduced. Let M ′
opt(pj) denote the set of students

who are paired with lecturer clones in M ′
opt associated with project pj . Then M ′

opt(pj) =

Mopt(pj)\M(pj) by construction. Finally, let Mα
0 denote the value of M0 = M \Mopt on

Line 1 of Algorithm 5.6, i.e. the original set of unmapped student-project pairs.

Proposition 5.5.18. Let (si, l
c,r) ∈ M ′

opt be an edge in G′ where (si, pj) ∈ Mopt. If lc,r is

unassigned in M ′ or if there exists an edge (si′ , l
c,r) ∈ M ′ where si′ is assigned to a project

other than pj in M , then |Mopt(pj)| > |M(pj)|, and hence pj is undersubscribed in M .

Proof. Suppose lc,r is unassigned in M ′ or (si′ , l
c,r) ∈ M ′ where si′ is assigned a project

other than pj in M . Assume for contradiction that |Mopt(pj)| ≤ |M(pj)|. During the execu-
tion of Algorithm 5.6, the first while loop iterates over the lecturer clones in G′ once. This
means that all edges in M ′

opt(pj) are iterated over.

Since |Mopt(pj)| ≤ |M(pj)|, we know that |Mopt(pj)\M(pj)| ≤ |M(pj)\Mopt(pj)|. But
then |M ′

opt(pj)| ≤ |Mα
0 (pj)| and so it must be the case that every lecturer clone in a pair of

M ′
opt(pj) (including lc,r) is paired with a student in Mα

0 (pj). This contradicts the fact that lc,r

is either unassigned in M ′ or (si′ , l
c,r) ∈ M ′ where si′ is assigned to a project other than pj

in M . It follows immediately that pj is undersubscribed in M .

Proposition 5.5.19. Let (si, l
c,r) ∈ M ′ be an edge in G′ where (si, pj) ∈ M . If there exists

an edge (si′ , l
c,r) ∈ M ′

opt where si′ is assigned to a project other than pj in Mopt, then

|M(pj)| > |Mopt(pj)|, and hence pj is undersubscribed in Mopt.

Proof. We use a similar proof to Proposition 5.5.18. Suppose there exists an edge (si′ , l
c,r) ∈

M ′
opt where si′ is assigned a project other than pj in Mopt and assume for contradiction that
|M(pj)| ≤ |Mopt(pj)|. During the execution of Algorithm 5.6, the first while loop iterates
over the lecturer clones in G′ once, meaning that all edges in M ′

opt(pj) are iterated over.

As |M(pj)| ≤ |Mopt(pj)|, we know that |M(pj)\Mopt(pj)| ≤ |Mopt(pj)\M(pj)|. But then
|Mα

0 (pj)| ≤ |M ′
opt(pj)| and so each student in Mα

0 (pj) is paired with a lecturer clone that
exists in a pair of M ′

opt(pj). But this contradicts the fact that both (si, l
c,r) ∈ M ′ with

si ∈ Mα
0 (pj) and (s′i, l

c,r) ∈ M ′
opt with si /∈ M ′

opt(pj). Hence |M(pj)| > |Mopt(pj)| and so
pj is undersubscribed in Mopt.

We now give three proofs of preliminary results that are used to aid Lemma 5.5.23 and
Lemma 5.5.24 in showing that it is not possible for a component of the types shown in
Figure 5.7f or in Figure 5.7g to exist in G′.

First, Proposition 5.5.20 shows that for a component of the type shown in Figure 5.7f, nei-
ther student sc,1 nor sc,2 can have applied to the project sc,1 is assigned to in Mopt, during
Algorithm 5.2’s execution.

5.5. 3
2
-approximation algorithm correctness proofs 139

Proposition 5.5.20. Let c be the component of G′ in Figure 5.7f. Let sc,1 be assigned to

project pj in Mopt. Then project pj is fully available in M and, sc,1 and sc,2 can never have

applied to pj at any point in Algorithm 5.2’s execution.

Proof. Let lecturer clone lc,1 correspond to lecturer lk. InG′, lecturer clone lc,1 is unassigned
in M ′, therefore we know that lk is undersubscribed in M . Since there is no edge in M ′

incident to lc,1, by Proposition 5.5.18, we know pj is undersubscribed in M . Project pj is,
by definition, fully available in M and, by Proposition 5.5.3, must have been fully available
throughout the algorithm’s execution.

Now we prove that neither sc,1 nor sc,2 can have applied to pj . In Algorithm 5.4, students can
only apply to projects that are not fully available by Proposition 5.5.4, hence we only look
at the main while loop of Algorithm 5.2. We consider sc,1 first. Assume for contradiction
that sc,1 applied to pj at some point during the main while loop of Algorithm 5.2’s execution.
Then (sc,1, pj) would be added to M as pj was always fully available. But we know that
(sc,1, pj) is not in the final matching M hence it must have been rejected by lk at some point.
But this can only have happened if pj was not fully available, which contradicts the fact that
pj is always fully available above. Therefore sc,1 can never have applied to pj at any point.
By identical reasoning sc,2 can also never have applied to pj .

Next, in Proposition 5.5.21, we prove a more general result that if a student applies to a
project while they are in phase 2, then that project is neither fully available nor precarious.

Proposition 5.5.21. Suppose that student si applied to project pj in phase 2 of Algorithm 5.2

and denote this time by T0. Then at time T0, pj is not fully available and is non-precarious.

Proof. Let lk be the lecturer offering pj . Assume for contradiction that pj is fully available
at T0. Since si is applying to pj in phase 2, lk must have rejected si when si was in phase 1.
But this can only happen if pj is not fully available and by Proposition 5.5.3, pj cannot again
become fully available.

Assume then that pj is precarious at T0. Then there must exist a precarious pair (si′ , pj) in
the matching for some student si′ . We know from Proposition 5.5.5 that when a project is
not fully available and non-precarious, it cannot again become precarious. Therefore, when
si applied in phase 1 to pj , it was either fully available or precarious (or both), and so (si, pj)

must have been added to the matching. But at some point before T0, since si is applying
in phase 2, (si, pj) was removed from the matching. This can only happen when pj is not
fully available and either (si, pj) is precarious or is a worst student in M(pj) (also a worst
assignee of M(lk)).

If (si, pj) was precarious then, once removed, si would again apply to pj in phase 1 and must
be successfully added for the same reason as before, although this time as a non-precarious

5.5. 3
2
-approximation algorithm correctness proofs 140

pair (since other fully available projects tied with pj on si’s list would be applied to by
si before pj). The removal of non-precarious (si, pj) can only happen because pj is non-
precarious which contradicts the assumption that pj is precarious at T0 by Proposition 5.5.5,
since pj is also not fully available. Therefore pj is non-precarious at T0.

Therefore pj can be neither fully available nor precarious at T0.

Finally, Proposition 5.5.22, shows that if a project is full and non-precarious at some point
before the end of the main while loop of Algorithm 5.2, then this project cannot subsequently
accept a worse student (according to the lecturer who offers it).

Proposition 5.5.22. Let Tend denote the point in Algorithm 5.2’s execution at the end of the

main while loop. If a project pj offered by lk is full and non-precarious before Tend, then

a student si worse than lk’s worst ranked assignees in M(pj) cannot subsequently become

assigned to pj .

Proof. As in Proposition 5.5.8, let T0 be a point of the algorithm’s execution, mentioned in
the statement of the propostion, where pj is full and non-precarious. By Proposition 5.5.8,
we know that after T0 a student si worse than lk’s worst ranked assignees in M(pj) cannot
subsequently become assigned to pj before Tend. Hence we concentrate only on changes
made by Algorithm 5.4. Additionally, due to this same result, it suffices to show that a
student si worse than lk’s worst ranked assignees in M(pj) at Tx (for Tx in the range T0 to
Tend) cannot subsequently become assigned to pj .

Project pj is either full or undersubscribed at Tend. We deal with each case in turn.

• Assume first, that pj is full at Tend. If pj remains full then no student can become
assigned to pj . Therefore assume that pj becomes undersubscribed after Tend and let
T1 be the first time this occurs. It must be that, just before T1, a blocking pair (si′ , pj)

exists, for some student si′ . By Propositions 5.5.10 and 5.5.11, si′ ∈ M(pj) is one of
the worst students in M(lk). Since T1 is the first time pj becomes undersubscribed, no
students have been removed from M(pj) since Tend, and so si′ must have existed in
M(pj) at Tend as well. Since no students are introduced in Algorithm 5.4, si′ ∈M(pj)

is also one of the worst students in M(lk) at Tend. Therefore, by Proposition 5.5.8, pj
cannot subsequently be assigned a worse student than exists in M(pj) at Tend.

• Assume now that pj is undersubscribed at Tend. Then there was some point T2, before
Tend and after T0, that pj became undersubscribed by the removal from M of (si′ , pj)

for some student si′ . We know that (si′ , pj) is non-precarious since pj is non-precarious
after T0 by Proposition 5.5.5. The removal of a pair (si′ , pj) at T2 can only have
happened if lk was full, non-precarious (since we are removing a non-precarious pair)

5.5. 3
2
-approximation algorithm correctness proofs 141

and lk meta-preferred the student they are adding, to si′ . But then si′ ∈M(pj) was one
of the worst students in M(lk) just before T2, and so, by Proposition 5.5.8, pj cannot
subsequently be assigned a worse student.

Therefore, a student si worse than lk’s worst ranked assignees in M(pj) at T0 cannot subse-
quently become assigned to pj .

In Lemma 5.5.23 we prove that it is not possible for a component of the type shown in Figure
5.7f to exist in G′.

Lemma 5.5.23. Let M be a stable matching found by Algorithm 5.2 for instance I of SPA-
ST, and let Mopt be a maximum stable matching in I . No component of the type given in

Figure 5.7f can exist in the mapped graph G′.

Proof. Assume for contradiction that there is a component c of the type shown in Figure 5.7f
in G′. Let pj be the project assigned to sc,1 in M ′

opt in Figure 5.7f.

We look at the possible configurations in G that could map to c in G′. Lecturer clones lc,1

and lc,2 may or may not be the same lecturer in G. It may also be the case that sc,1 and
sc,2 are assigned to the same or different projects in M ′ and M ′

opt, respecting the fact that
projects may only be offered by one lecturer. Let sc,1 = si and sc,2 = si′ . Figure 5.8
shows the possible configurations in G relating to c in G′. They are found by noting that
all configurations in G must have: 2 students; 1 or 2 lecturers; between 2 and 3 projects;
student si′ must be unassigned in M ; and si′ must be assigned a project of the same lecturer
in Mopt as si is in M . Note that it is not possible for there to be only one project pj in the
configuration since si would be assigned to pj in both M and M ′

opt, meaning (si, pj) would
not exist in Mopt\M or M\Mopt and so neither of the edges from sc,1 would exist in G′, a
contradiction.

We now show that none of the subgraphs shown in Figure 5.8 can occur in a matching M
with respect to G found using Algorithm 5.2. Assume for contradiction that one does occur.
We consider each type of subgraph separately.

(a) Students si and si′ are assigned to pj and pj′ in Mopt respectively, and si is assigned to
pj′ in M . Lecturer lk offers both pj and pj′ .

There are three sub-cases to consider.

i. si strictly prefers pj to pj′: If si strictly prefers pj to M(si) then si must have
applied to pj at least once. But this contradicts Proposition 5.5.20.

5.5. 3
2
-approximation algorithm correctness proofs 142

si

si′

pj

pj′

lk

(a)

si

si′

pj

pj′

lk

(b)

si

si′

pj

pj′

pj′′

lk

(c)

si

si′

pj

pj′

lk

lk′

(d)

si

si′

pj

pj′

pj′′

lk

lk′

(e)

Figure 5.8: Possible configurations in G for an alternating path of size 3 in G′ with M ′
opt

end edges. M and Mopt are shown in bold and non-bold edges respectively. Any project and
lecturer vertices shown may have additional assignments involving other vertices not shown
in the graphs.

ii. pj and pj′ are tied on si’s preference list: Project pj is fully available in the
finalised matching M by Proposition 5.5.20 and has always been fully available
by Proposition 5.5.3. As there is a fully available project tied with pj′ on si’s list,
once edge (si, pj′) is added to M , as long as it remains, it must be precarious.
Pair (si, pj′) cannot be removed at any stage before the end of the main while
loop, since doing so would mean si would apply to pj before again applying to
pj′ (since pj is fully available) contradicting Proposition 5.5.20. Also Algorithm
5.4 cannot change the allocations of any precarious lecturer by Proposition 5.5.6.
Therefore Algorithm 5.2 must terminate with (si, pj′) as a precarious pair.

Student si′ must have applied to pj′ in phase 2 since they are unassigned in the
finalised matching M . By Proposition 5.5.21, at the point of application, pj′ is
not fully available and is non-precarious. But by Proposition 5.5.5 pj′ cannot
subsequently become precarious and so the algorithm will terminate with a non-
precarious pj′ , contradicting the above.

iii. si strictly prefers pj′ to pj: We consider three further sub-cases based on lk’s
preference list.

1. lk strictly prefers si to si′: We know that si strictly prefers pj′ to pj and that
lk strictly prefers si to si′ . But then (si, pj′) forms a blocking pair of stable

5.5. 3
2
-approximation algorithm correctness proofs 143

matching Mopt, a contradiction.

2. si′ and si are tied on lk’s preference list: Project pj is fully available inM by
Proposition 5.5.20 and has always been fully available by Proposition 5.5.3.
Student si must have been assigned to pj′ in phase 1, otherwise si would
have applied to pj , contradicting Proposition 5.5.20. Student si′ must have
applied to pj′ in phase 2 since si′ is unassigned in M . Denote the point at
which si′ applies to pj′ in phase 2 as T0. By Proposition 5.5.21, at T0, pj′ is
not fully available and is non-precarious. By Proposition 5.5.5, pj′ remains
non-precarious from time T0 until the algorithm’s termination. Regardless
of whether (si, pj′) exists in the matching at time T0, we know from time T0,
(si, pj′) cannot be removed from M , otherwise si would remove pj′ from
their preference list (as pj′ is non-precarious) contradicting the fact that si
assigned to pj′ in phase 1.
We consider the following two possibilities.

• si′ applied to pj′ in phase 2 before pair (si, pj′) was added: Assume first
that si′ is unsuccessful in its application at T0. From above we know that
pj′ remains non-precarious from T0 onwards.

– If pj′ is undersubscribed at time T0, then lk cannot be precarious (as
si′ was rejected) and so lk does not meta-prefer si′ to its worst as-
signee sw ∈ M(lk) at T0. Lecturer lk must be full at this point since
pj′ is not fully available and is undersubscribed. As lk is full and must
remain non-precarious by Proposition 5.5.5, after T0, it is only pos-
sible for lk to improve their allocations, by Proposition 5.5.8. Since
lk meta-prefers si′ to si (si′ is in phase 2), when si applies to pj′ , si
must also be rejected. Project pj′ is non-precarious after T0 and so si
must remove pj′ from their list, contradicting the fact that si must be
assigned to pj′ in phase 1.

– If pj′ is full at T0 then since it is also non-precarious, we know lk does
not meta-prefer si′ to its worst assignee sw in M(pj′). By Proposition
5.5.8, pj′ cannot accept assignments that are worse than or equal to the
worst assignee in M(pj′) until after the main while loop. Therefore
when si applies to pj′ before the main while loop, as in the previous
case, they must also be rejected, a contradiction as above.

Assume therefore that si′ is successful in their application at T0. Pair
(si′ , pj′) must be removed at some point after T0 since (si′ , pj′) /∈ M .
Denote the time (si′ , pj′) is removed as T1. The removal at T1 must
have occurred before the end of the main while loop since otherwise
si′ would be assigned to some project in the finalised matching M (the

5.5. 3
2
-approximation algorithm correctness proofs 144

same students are assigned when removing blocking pairs of type (3bi)),
which it is not. We know that (si, pj′) was added either after T0 and
before T1 or after T1. Once added (si, pj′) cannot be removed from
above.

– Assume (si, pj′) was added before T1. At T1 (before the end of the
main while loop) pair (si′ , pj′) is removed. This must either be be-
cause pj′ is undersubscribed and lk is full, or because pj′ is full.

∗ If the former then lk is full and cannot be precarious since we are
removing a non-precarious pair (pj′ is non-precarious after T0). But
this removal can only happen if si′ is the worst student assigned
to lk at T1. But by the definition of a worst assignee si (being in
phase 1) would be removed before si′ . Therefore, (si, pj′) must
have already been removed from the matching, a contradiction to
the fact that (si, pj′) cannot be removed.

∗ Using similar reasoning, if pj′ is full at T1, then (as we are removing
a non-precarious pair), si′ must be the worst student assigned in
M(pj′). But this would mean (si, pj′) had already been removed, a
contradiction.

– Assume (si, pj′) was added after T1. Again we consider two sub-
cases.

∗ If pj′ was undersubscribed at time T1, then lk must have been full
and must be non-precarious since non-precarious pair (si′ , pj′) was
removed. This pair was removed as si′ was a worst student in lk at
T1. By Proposition 5.5.5, lk remains non-precarious from this point
onwards and therefore by Proposition 5.5.8, lk can only improve
their allocations from time T1. Therefore, as lk meta-prefers si′ to
si (as si′ is in phase 2), it must be that si, applying after T1, will
be rejected. This would result in the removal of pj′ from si’s list
contradicting the fact that si assigned to pj′ in phase 1.

∗ If pj′ is full at T1 then using similar reasoning to above, we know
that at T1, si′ is a worst assignee in M(pj′). Since, at T1, pj′ is full
and non-precarious, and remains non-precarious, by Proposition
5.5.8, pj′ cannot subsequently accept assignments that are worse
than or equal to the worst assignee in M(pj′) until the end of the
main while loop. Therefore si will be rejected on application, a
contradiction as above.

• si′ applied to pj′ in phase 2 after pair (si, pj′) was added: At T0, since lk
meta-prefers si′ to si (si is in phase 1 whereas si′ is in phase 2), (si′ , pj′)

5.5. 3
2
-approximation algorithm correctness proofs 145

must be added to the matching with some student other than si′ being
removed, since si cannot be removed fromM from time T0. But now we
are in the same position as before where (si′ , pj′) must be removed from
M , but this can only happen if (si, pj′) is removed first, a contradiction.

3. lk strictly prefers si′ to si: Since si′ is unassigned inM , (si′ , pj′) is a blocking
pair of stable matching M , a contradiction.

(b) Students si and si′ are both assigned to the same project pj in Mopt and si is assigned
to project pj′ in M . Both pj and pj′ are offered by lecturer lk. Since si′ is unassigned
in M , we know that si′ has to have applied to pj during the algorithm’s execution, but
this directly contradicts Proposition 5.5.20.

(c) Students si and si′ are assigned to pj and pj′′ in Mopt respectively, and si is assigned
to pj′ in M . Lecturer lk offers pj , pj′ and pj′′ . By Proposition 5.5.18, pj′′ is undersub-
scribed in M since lecturer clone lc,2 in Figure 5.7f is connected to an edge in M ′

opt

corresponding to pj′′ and an edge in M ′ corresponding to pj′ . We know that lk is un-
dersubscribed in M since lc,1 is not assigned in M ′, and so pj′′ must be fully available.
By Proposition 5.5.3 we know that pj′′ has always been fully available during the algo-
rithm’s execution. Since si′ is unassigned in M they must have applied to pj′′ during
the course of the algorithm. But as pj′′ has always been fully available this must have
been accepted. As we end up with si′ being unassigned it must also be the case that lk
rejects pair (si′ , pj′′) but we know that pj′′ is always fully available and so this cannot
have happened, a contradiction.

(d) Students si and si′ are assigned to pj and pj′ in Mopt respectively, and si is assigned
to pj′ in M . Lecturers lk and lk′ offer projects pj and pj′ , respectively. Identical
arguments to those found in Case (a)i. and (a)ii. can be used to show a contradiction.
Similarly, identical arguments to those found in Case (a)iii. can also be used to show
a contradiction, but exchanging lk for lk′ .

(e) Students si and si′ are assigned to pj and pj′′ in Mopt respectively, and si is assigned
to pj′ in M . Lecturer lk offers project pj , whereas lk′ offers projects pj′ and pj′′ . We
consider the following 3 sub-cases.

i. si strictly prefers pj to pj′: Identical arguments to those found in Case (a)i. can
be used to show a contradiction.

ii. pj and pj′ are tied on si’s preference list: Using similar reasoning to Case (a)ii.
we know that once edge (si, pj′) is added to M it is, and remains, a precarious
pair and cannot be removed at any stage. Also pj′ must have been fully available
on application by si otherwise fully available pj at the same rank would have been

5.5. 3
2
-approximation algorithm correctness proofs 146

applied to by si. Therefore pj′ is either fully available or precarious throughout
the algorithm’s execution. Student si′ is not assigned in M and so must have
applied to pj′′ whilst they were in phase 2. Let this time of application be denoted
T0. By Proposition 5.5.21, pj′′ cannot be precarious at T0.

• If pj′ is fully available at T0 then lk′ is undersubscribed and so si′ would only
be rejected if pj′′ was non-precarious, full and si′ was not meta-preferred by
lk′ to an student in M(pj′′).

• If pj′ is precarious at T0 then lk′ is also precarious and therefore si′ would
again only be rejected if pj′′ was non-precarious, full and si′ was not meta-
preferred by lk′ to an student in M(pj′′).

Therefore we have the following two cases.

1. If si′ was rejected then it must be because pj′′ was non-precarious, full and
si′ was not meta-preferred by lk′ to any student in M(pj′′), by above. But
similar to Case (c) we can say that by Proposition 5.5.18, pj′′ is undersub-
scribed in the finalised matching M . Therefore, at least one non-precarious
pair involved with pj′′ must be removed (without a pair involving pj′′ imme-
diately replacing it) before the end of the algorithm. Denote this point in the
algorithm’s execution as T1 and the removed pair (si′′ , pj′′) for some student
si′′ . Note T1 may either be before of after the end of the main while loop.
This type of removal can only happen when lk′ is full (this is clear before the
main while loop, and is true after the main while loop by Proposition 5.5.2),
and once a lecturer is full they remain full (since any pair deletion involving
a project of lk′ can only occur with a pair addition involving a project of lk′).
But (si, pj′) was assigned when pj′ was fully available and so (si, pj′) was
assigned before T1. If T1 occurs after the end of the main while loop then
lk′ must be non-precarious at T1 by Proposition 5.5.6. But this means before
T1, pair (si, pj′) is either in the matching but no longer precarious, or has
been removed from the matching, a contradiction to the fact that (si, pj′),
once added, remains a precarious pair that can never be removed. Therefore
the removal of (si′′ , pj′′) at T1 must have occurred before the end of the main
while loop. But, since (si, pj′) is precarious, it would be removed before
non-precarious (si′′ , pj′′), a contradiction.

2. If si′ was accepted then pair (si′ , pj′′) would need to be removed before the
algorithm terminated (since (si′ , pj′′) /∈M). We know from before that pj′′ is
non-precarious at the point of application and further that pair (si′ , pj′′) must
remain non-precarious by definition since si′ applied in phase 2. Therefore,
we need to remove non-precarious pair (si′ , pj′′) from the matching which
can only happen if either pj′′ is full or lk′ is full. Firstly assume that pj′′

5.5. 3
2
-approximation algorithm correctness proofs 147

is full and pair (si′ , pj′′) is replaced with a meta-preferred student assigned
to pj′′ (pj′′ must be non-precarious since we are removing a non-precarious
pair). Since pj′′ needs to be undersubscribed in the finalised matching M we
are in the same position and contradiction as the previous case. Secondly, lk′

is full (and therefore remains full), in which case pair (si, pj′) must already
be in M (since it was added to M when pj′ was fully available) and we
can use a similar reasoning to the latter half of the previous case to show a
contradiction.

iii. si strictly prefers pj′ to pj: We now consider three sub-cases based on lk′’s pref-
erence list.

1. lk′ strictly prefers si to si′: We know that pj′ is undersubscribed in Mopt by
Proposition 5.5.19. Either lk′ is undersubscribed (in which case pj′ is fully
available), or lk′ is full (and strictly prefers si to si′). In either case, (si, pj′)

is a blocking pair of stable Mopt, a contradiction.

2. si′ and si are tied on lk′’s preference list: For this initial paragraph we use
some similar reasoning to Case (a)iii.2.. Student si must have assigned to pj′

in phase 1, otherwise si would have applied to pj a contradiction to Propo-
sition 5.5.20. Unlike Case (a)iii.2., pj′ may be precarious at this point of
application. Also, student si′ , not being assigned in M , must have applied to
pj′′ whilst in phase 2. Denote the point at which si′ applies to pj′′ in phase
2 as T0. At T0 we know that pj′′ is not fully available and is non-precarious
by Proposition 5.5.21 and that pj′′ remains non-precarious from this point
onwards by Proposition 5.5.5.
We look at two possibilities:

A. si′ was rejected at T0: There would be two possible reasons for the
rejection. Firstly, that lk′ is non-precarious, full and lk′ does not meta-
prefer si′ to any student in M(lk′). Secondly, that pj′′ is non-precarious,
full and lk′ does not meta-prefer si′ to any student in M(pj′′). We can
rule out the first option as follows. If lk′ is non-precarious and full at
T0 then by Proposition 5.5.8, lk′ cannot accept a worse student than cur-
rently exists in M(lk′) for the remainder of the algorithm. Since si′

was rejected we can conclude that no worse student than si′ can exist in
M(lk′) at T0 and cannot exist in M(lk′) from T0 onwards. But si′ being
in phase 2 is meta-preferred to si in phase 1. This contradicts the fact that
(si, pj′) ∈M . Therefore, si′ was rejected because pj′′ is non-precarious,
full and lk′ does not meta-prefer si′ to any student in M(pj′′).
Using a similar strategy to Case (e)ii., we know that pj′′ is undersub-
scribed in the finalised matching M by Proposition 5.5.18, therefore

5.5. 3
2
-approximation algorithm correctness proofs 148

before the algorithm terminates a pair (si′′ , pj′′) involving pj′′ must be
removed without being immediately replaced with another pair involv-
ing pj′′ . Denote the first such occurrence as happening at time T1, where
T1 occurs after T0. Note that T1 may be either before or after the end of
the main while loop.

• Assume T1 occurs before the end of the main while loop. We know
any removal of the type occurring at T1 must be due to lk′ being full
and non-precarious (since (si′′ , pj′′) is removed as a non-precarious
pair). By Proposition 5.5.8, we know lk′ cannot subsequently be as-
signed inM a student worse than or equal to a worst student inM(lk′)

at T1. Using the same proposition we know that pj′′ cannot be as-
signed in M a worse student until the end of the main while loop than
exists in the matching at T0.
Since a pair involving pj′′ was removed at T1, a worst assignee in
M(lk′) at T1 can be no worse than a worst assignee in M(pj′′) at T0.
Finally, this means that no student assigned to lk′ from T1 onwards
can be worse than si′ rejected at T0, but si being in phase 1 is worse
than si′ in phase 2 according to lk′ , a contradiction to the fact that
(si, pj′) ∈M .

• Assume therefore that T1 occurs after the end of the main while loop.
Then si has to be assigned to pj′ at this point. Since pj′′ becomes
undersubscribed at T1, pair (si′′ , pj′′′) must be a blocking pair of type
(3bi), where pj′′′ is an undersubscribed project of lk′ , and si strictly
prefers pj′′′ to pj′′ . By Propositions 5.5.10 and 5.5.11, si′′ must be
a worst student in M(lk′) and therefore M(pj′′) at T1. But, we also
know that at T0 when si′ was rejected, lk′ could not subsequently ac-
cept a student to project pj′′ that is worse than a worst student existing
in M(pj′′) for the remainder of the algorithm, by Proposition 5.5.22.
Also, since si′ was rejected, no worse student can exist in pj′′ at T0.
Therefore, since (si′′ , pj′′) exists in M just before T1, si′′ cannot be
worse than si′ according to lk′ (and so must either be of equal rank
and in phase 2 or of higher rank). Recall that (si, pj′) was assigned in
phase 1 and so must exist in the matching at T1. This means that si′′

is either at an equal rank to si (as the rank of si and si′ are equal) but
is in phase 2 with si being in phase 1, or si′′ is at a higher rank than
si. In either case this contradicts the fact that si′′ is a worst student in
M(lk′) at T1.

B. si′ application to pj′′ was accepted at T0: Pair (si′ , pj′′) does not exist

5.5. 3
2
-approximation algorithm correctness proofs 149

in the finalised matching M and therefore must be removed sometime
after T0. We know (si′ , pj′′) is always non-precarious by definition (as
si′ applied in phase 2 and hence is removed as a non-precarious pair.
Since si′ is unassigned in the finalised matching M and Algorithm 5.4
cannot change which students are assigned, (si′ , pj′′) must be removed
before the end of the main while loop. Denote this time as T2.
This can only happen if either lk′ is full and si′ is a worst assignee in
M(lk′) or pj′′ is full and si′ is a worst assignee in M(pj′′). If the for-
mer, then by Proposition 5.5.8, lk′ cannot accept a worse student than
a current worst student in M(lk′). This worst student cannot be worse
than si′ , since si′ was just removed, hence si (of equal rank to si′ and in
phase 1) cannot be assigned a project of lk′’s in the finalised matching
M , a contradiction. Therefore at T2, pj′′ is full and si′ is removed as a
worst assignee in M(pj′′).
But since pj′′ must be undersubscribed in the finalised matching M by
Proposition 5.5.18, we can now use almost identical arguments as in
case (e)iii.2.2.A to show a contradiction, noting that T2 replaces T0 and
si′ was removed rather than rejected.

3. lk′ strictly prefers si′ to si: Project pj′′ is undersubscribed in M by Propo-
sition 5.5.18. Either lk′ is undersubscribed (in which case pj′′ is fully avail-
able), or lk′ is full (and strictly prefers si′ to si). In either case, (si′ , pj′′) is a
blocking pair of stable M , a contradiction.

Therefore it is not possible for a component structured as in Figure 5.7f to exist in G′.

Similar to our previous lemma, we prove in Lemma 5.5.24 that it is not possible for a com-
ponent of the type shown in Figure 5.7g to exist in G′.

Lemma 5.5.24. Let M be a stable matching found by Algorithm 5.2 for instance I of SPA-
ST, and let Mopt be a maximum stable matching in I . No component of the type given in

Figure 5.7g can exist in the mapped graph G′.

Proof. Let pj be the project that student sc,1 is assigned to in Mopt and let lecturer clone lc,1

correspond to lecturer lk in G. lk must be undersubscribed in M as there is a lecturer clone
lc,1 unassigned in M ′. Also, by Proposition 5.5.18, pj must also be undersubscribed in M .
Therefore, pj is fully available at the end of the algorithm’s execution and must always have
been fully available by Proposition 5.5.3.

Student si is unassigned in M and so we know that si has to have applied to pj during
the algorithm’s execution. Since pj has always been fully available this had to have been

5.5. 3
2
-approximation algorithm correctness proofs 150

accepted. Now, (si, pj) is not in the finalised matching M and so it must have been removed
and this could only have happened if pj or lk were full. But this contradicts the fact that pj
has always been fully available. Therefore, no component of type (g) can exist in the mapped
graph G′.

Finally, Theorem 5.5.25 proves that Algorithm Max-SPA-ST-Approx is a 3
2
-approximation

algorithm for MAX-SPA-ST.

Theorem 5.5.25. Let M be a stable matching found by Algorithm 5.2 for instance I of SPA-
ST, and let Mopt be a maximum stable matching in I . Then |M | ≥ 2

3
|Mopt|.

Proof. Let G′ be the mapped graph constructed from the underlying graph of the instance
G. Components in G′ may only exist in the forms shown in Figure 5.7. Therefore we need
only show that no component in G′ can exist where the number of M ′ edges is less than
two-thirds of the number of M ′

opt edges. We run through each component of Figure 5.7 in
turn. Let the current component be denoted c, where M ′(c) and M ′

opt(c) denote the set of
edges in M ′ and M ′

opt involved in c, respectively.

For Case 5.7a, an alternating cycle, and Cases 5.7b and 5.7c, alternating paths of even length,
it is clear that |M ′(c)| = |M ′

opt(c)|. Case 5.7d involves an odd length alternating path with
end edges in M ′. It must be the case therefore that |M ′(c)| > |M ′

opt(c)| for components of
this type. Case 5.7e shows an odd length alternating path with end edges in M ′

opt, but for
path sizes greater than 5. Therefore, |M ′(c)| ≥ 2

3
|M ′

opt(c)| as required. Neither Case 5.7f
nor 5.7g can exist in G′ by Lemmas 5.5.23 and 5.5.24 respectively.

Hence it is not possible for the mapped graph G′ to contain components in which |M ′(c)| <
2
3
|M ′

opt(c)|. Algorithm 5.2 is therefore a 3
2
-approximation algorithm for the problem of find-

ing a maximum stable matching in I .

5.5.6 Lower bound for the algorithm

Figure 5.9 shows instance I5 of SPA-ST. A maximum stable matching M ′ in I is given by
M ′ = {(s1, p2), (s2, p3), (s3, p1)}. The only possible blocking pairs for this matching are
(s3, p3) and (s3, p2). However, neither pair can be a blocking pair since l2 prefers both of
their current assignees to s3.

A trace is given as Table 5.3 which shows the execution run of Algorithm 5.2 over instance
I5. The algorithm outputs stable matching M = {(s1, p3), (s3, p2)}. The possible blocking
pairs of this matching are (s2, p3) and (s3, p3). Neither can be a blocking pair since l2 prefers
s1 to both s2 and s3.

5.6. Conclusions and future work 151

Student preferences:
s1: (p3 p2)
s2: p3
s3: p3 p2 p1

Project details:
p1: lecturer l1, c1 = 2
p2: lecturer l1, c2 = 1
p3: lecturer l2, c3 = 1

Lecturer preferences:
l1: s1 s3
l2: s1 s2 s3

d1 = 2
d2 = 1

Figure 5.9: SPA-ST instance I5 in which Algorithm Max-SPA-ST-Approx finds a stable
matching two-thirds of the size of optimal.

Action s1 s2 s3
1 s1 applies to p3, accepted p3
2 s2 applies to p3, accepted p3
3 s3 applies to p3, rejected, s3 removes p3 p3
4 s3 applies to p2, accepted p3 p2
5 s1 applies to p3, accepted, s2 removes p3 p3 p2
6 s2 moves to phase 2 p3 p2
7 s2 applies to p3, rejected, s2 removes p3 p3 p2
8 s2 moves to phase 3 p3 p2

Table 5.3: Trace of running Algorithm Max-SPA-ST-Approx for instance I5 in Figure 5.9.
In this table, the phrase “si removes pj” indicates that student si removes project pj from
their preference list.

Therefore, Algorithm Max-SPA-ST-Approx has found a stable matching that is exactly two-
thirds of the size of the maximum stable matching, thus the algorithm cannot guarantee a
better bound than 3

2
.

We further note that this result holds for the arbitrarily large family of instances generated by
copying instance I5 a constant number of times, such that in each copy, indices of students
and projects increase by 3 and indices of lecturers increase by 2.

5.6 Conclusions and future work

This chapter has described a 3
2
-approximation algorithm for MAX-SPA-ST. Furthermore,

we gave an example to show that the 3
2

bound is tight. It is of interest to determine how
likely it is that such a worst-case example would arise in practice. In other words, can
we expect the algorithm to produce stable matchings that are much closer to optimal in
general? In Chapter 6, we present a new IP model for MAX-SPA-ST and use this to determine
whether our 3

2
-approximation algorithm might in general produce matchings that are closer

to optimal than the worst case bound of 3
2
. It remains open to describe an approximation

algorithm that has a better performance guarantee, and/or to prove a stronger lower bound
on the inapproximability of the problem than the current best bound of 33

29
[74].

The work in this chapter has mainly focused on the size of stable matchings. However, it is

5.6. Conclusions and future work 152

possible for a stable matching to admit a blocking coalition, where a permutation of student
assignments could improve the allocations of the students and lecturers involved without
harming anyone else. Since permutations of this kind cannot change the size of the matching
they are not studied further here, but would be of interest for future work.

153

Chapter 6

Experiments and IP models for
SPA-ST and lecturer load balancing
for SPA-STL

6.1 Introduction

6.1.1 Background

In this chapter we continue our work in SPA-ST by first evaluating the performance of our
3
2
-approximation algorithm from Chapter 5 (Algorithm Max-SPA-ST-Approx), and second,

investigating lecturer load balancing in SPA-STL. An introduction to SPA-ST was given in
Section 2.5.2.2. The extension to SPA-ST, in which each lecturer has a target number of
assignees, known as SPA-STL, was introduced in Section 2.5.2.3. In SPA-STL, it is desirable
to find a matching that brings the number of assignees of each lecturer as close to their target
as possible. There are several ways this may be done and three natural definitions are given
below. Let I be an instance of SPA-STL.

• A matching M is load-max-balanced if the maximum absolute difference between
lecturer targets and lecturer allocations is minimised over all matchings. We define the
load-max-balanced score rm(M) as max

lk∈L
||M(lk)| − tk|. Thus a load-max-balanced

matching is a matching M such that rm(M) = min
M ′∈M

max
lk∈L
||M(lk)| − tk|.

• A matching M is load-sum-balanced if the sum of absolute differences between lec-
turer targets and lecturer allocations is minimised over all matchings. We define the
load-sum-balanced score rs(M) as

∑
lk∈L ||M(lk)| − tk|. Then a load-sum-balanced

matching is a matching M such that rs(M) = min
M ′∈M

∑
lk∈L ||M(lk)| − tk|.

6.1. Introduction 154

Finally, a matching M is load-balanced if it is both load-max-balanced and load-sum-
balanced.

6.1.2 Motivation

Some motivation for finding large stable matchings in SPA-ST was presented in Section 5.1.2
of Chapter 5. Recall that MAX-SPA-ST is the problem of finding a maximum stable matching
in an instance of SPA-ST. We are interested in determining how large the matchings that
are produced by the approximation algorithm (developed in Chapter 5) are, in practice. In
particular, understanding whether the algorithm tends to produce a stable matching with size
close to a maximum stable matching or close to either the 3

2
bound or a minimum-sized stable

matching (hereafter minimum stable matching) will help evaluate its performance.

To motivate our work in SPA-STL, we further discuss the example introduced in Section
5.1.2, which comprised students assigning to projects at a university. In this setting, each
lecturer offers a range of projects. Students have preferences over projects, and lecturers
have preferences over the students who rank their projects. We may wish to find a matching
that provides fair lecturer allocations, so that the number of students assigned to each lecturer
is as balanced as possible. This may be modelled by giving each lecturer a target number
of assignees. Since teaching and administration responsibilities as well as the number of
hours worked per week may differ among lecturers, it makes sense that each lecturer has
an individual target that is calculated based on these factors. It is then desirable to find a
matching that balances supervision loads fairly among lecturers by bringing each lecturer as
close to their target as possible. Further motivation for studying load-balanced matchings
as opposed to only load-max-balanced and load-sum-balanced matchings is presented in
Section 6.3.2.

6.1.3 Contribution

In this chapter we present two new contributions relating to SPA-ST. Firstly, in Section 6.2,
we evaluate our 3

2
-approximation algorithm for MAX-SPA-ST, by comparing output of this

algorithm against a new IP model for MAX-SPA-ST, using randomly-generated data. We
find that the performance of the approximation algorithm easily surpassed the 3

2
bound, con-

structing a stable matching within 92% of optimal in all cases, with the percentage being far
higher for many instances. Secondly, in Section 6.3, we consider lecturer load balancing in
SPA-STL. We give polynomial-time algorithms to find optimal matchings of the three types
of matching defined in Section 6.1.1. Additionally we show that when combined with stabil-
ity, finding optimal matchings of these types becomes NP-hard. We additionally present an
IP model to find a load balanced stable matching and prove its correctness.

6.2. IP model and experiments for SPA-ST 155

6.1.4 Structure of the chapter

Section 6.2 presents the experiments evaluating the performance of the 3
2
-approximation

algorithm for MAX-SPA-ST. Within this section, the IP model for MAX-SPA-ST and exper-
imental evaluation are given in Sections 6.2.2 and 6.2.3 respectively. Section 6.3 describes
the work relating to lecturer load balancing in SPA-STL. In Section 6.3.3 we present algo-
rithms to find a load-balanced matching and a maximum-sized load-max-balanced matching
(henceforth maximum load-max-balanced matching). Complexity results for finding an opti-
mal stable matching with respect to various lecturer load balancing objectives are presented
in Section 6.3.4. Section 6.3.5 gives an IP model for finding a load-balanced stable matching.
Finally, conclusions and future work are discussed in Section 6.4.

6.2 IP model and experiments for SPA-ST

6.2.1 Introduction

In this section we present a new IP model for MAX-SPA-ST, and use it to evaluate the 3
2
-

approximation algorithm for MAX-SPA-ST from Chapter 5. We additionally present experi-
ments investigating how matching properties differ with changing instance parameter values
such as instance size, probability of ties and preference list lengths.

6.2.2 IP model for MAX-SPA-ST

6.2.2.1 Stability definition

For the stability constraints in the model, it is advantageous to use an equivalent condition
for stability, as given by the following lemma.

Lemma 6.2.1. Let I be an instance of SPA-ST and let M be a matching in I . Then M is

stable if and only if the following condition, referred to as condition (*) holds: For each

student si ∈ S and project pj ∈ P , if si is unassigned in M and finds pj acceptable, or si
prefers pj to M(si), then either:

• lk is full, si /∈ M(lk) and lk prefers the worst student in M(lk) to si or is indifferent

between them, or;

• pj is full and lk prefers the worst student in M(pj) to si or is indifferent between them,

where lk is the lecturer offering pj .

6.2. IP model and experiments for SPA-ST 156

Proof. Suppose M is stable. Assume for contradiction that condition (*) is not satisfied.
Then there exists a student si ∈ S and a project pj ∈ P such that si is unassigned in M and
finds pj acceptable, or si prefers pj to M(si), and one of the following four cases arises:

1. pj and lk are both undersubscribed;

2. pj is undersubscribed, lk is full and si ∈M(lk);

3. pj is undersubscribed, lk is full and lk prefers si to the worst student in M(lk);

4. pj is full and lk prefers si to the worst student in M(pj).

Each of these scenarios clearly describes a blocking pair as in Section 2.5.2.1, hence we have
a contradiction to the stability of M .

Conversely, assumeM satisfies condition (*). Suppose for contradiction thatM is not stable.
Then, there exists a blocking pair (si, pj), implying that si is unassigned in M and finds pj
acceptable, or si prefers pj to M(si), and one of the above four cases will be true.

Whichever one of these cases holds, we then obtain a contradiction to the fact that the con-
ditions given in the statement of the theorem holds. Thus M is stable.

6.2.2.2 Description of variables and constraints

The key variables in the model are binary-valued variables xij , defined for each si ∈ S and
pj ∈ P , where xij = 1 if and only if student si is assigned to project pj . Additionally, we
have binary-valued variables αij and βij for each si ∈ S and pj ∈ P . These variables allow
us to more easily describe the stability constraints below. For each si ∈ S and lk ∈ L, let

Tik = {su ∈ S : rank(lk, su) ≤ rank(lk, si) ∧ su 6= si}.

That is, Tik is the set of students ranked at least as highly as student si in lecturer lk’s prefer-
ence list not including si. Also, for each pj ∈ P , let

Tijk = {su ∈ S : rank(lk, su) ≤ rank(lk, si) ∧ su 6= si ∧ pj ∈ A(su)}.

That is, Tijk is the set of students su ranked at least as highly as student si in lecturer lk’s
preference list, such that project pj is acceptable to su, not including si. Finally, let Sij =

{pr ∈ P : rank(si, pr) ≤ rank(si, pj)}, that is, Sij is the set of projects ranked at least as
highly as project pj in student si’s preference list, including pj . Figure 6.1 shows the IP
model for MAX-SPA-ST.

6.2. IP model and experiments for SPA-ST 157

maximise:
∑
si∈S

∑
pj∈P

xij

subject to:

1. xij ≤ 0 ∀si ∈ S ∀pj ∈ P , pj /∈ A(si)

2.
∑
pj∈P

xij ≤ 1 ∀si ∈ S

3.
∑
si∈S

xij ≤ cj ∀pj ∈ P

4.
∑
si∈S

∑
pj∈Pk

xij ≤ dk ∀lk ∈ L

5. 1−
∑
pr∈Sij

xir ≤ αij + βij ∀si ∈ S ∀pj ∈ P

6.
∑
su∈Tik

∑
pr∈Pk

xur ≥ dkαij ∀si ∈ S ∀pj ∈ P

7.
∑

su∈Tijk

xuj ≥ cjβij ∀si ∈ S ∀pj ∈ P

xij ∈ {0, 1} ∀si ∈ S ∀pj ∈ P
αij ∈ {0, 1} ∀si ∈ S ∀pj ∈ P
βij ∈ {0, 1} ∀si ∈ S ∀pj ∈ P

Figure 6.1: IP model for MAX-SPA-ST.

6.2. IP model and experiments for SPA-ST 158

Constraint 1 enforces xij = 0 if si finds pj unacceptable (since xij ∈ {0, 1}). Constraint 2

ensures that a student may be assigned to a maximum of one project. Constraints 3 and 4

ensure that project and lecturer capacities are enforced. In the left hand side of the inequality
of Constraint 5, if 1−

∑
pr∈Sij xir = 1, then either si is unassigned or si prefers pj to M(si).

This ensures that if si is unassigned or si prefers pj to M(si) then either αij = 1 or βij = 1

(or both), where αij and βij are described in Constraints 6 and 7. Constraint 6 ensures that,
if αij = 1, then the number of students assigned to lk who are ranked at least as highly as
student si by lk (not including si) must be at least lk’s capacity dk. Constraint 7 ensures that,
if βij = 1, then the number of students assigned to pj who are ranked at least as highly as
student si by lk (not including si) must be at least pj’s capacity cj .

Finally, for our optimisation we maximise the sum of all xij variables in order to maximise
the number of students assigned. The following section establishes the correctness of the IP
model.

6.2.2.3 Proof of correctness

Theorem 6.2.2. Given an instance I of SPA-ST, let J be the IP model as defined in Figure

6.1. A stable matching in I corresponds to a feasible solution in J and vice versa.

Proof. Assume instance I of SPA-ST contains a stable matching M . We construct a feasible
solution to J involving the variables x, α and β as follows.

The variables x, α and β are constructed as follows. For each student si ∈ S and for
each project pj ∈ P , if si is assigned to pj in M then we set variable xij = 1, otherwise
xij = 0. Let lecturer lk be the proposer of project pj . Let variable αij = 1 if the following
two conditions hold: i) student si is not assigned to lecturer lk, and ii) lecturer lk is full and
prefers their worst ranked assignee to si, or is indifferent between them. Else let αij = 0. Let
variable βij = 1 if the following two conditions hold: i) student si is not assigned to project
pj , and ii) project pj is full, and lk prefers pj’s worst assignee to si, or is indifferent between
them. Else, set βij = 0.

Now it must be shown that all constraints described in Figure 6.1 are satisfied.

1. Constraints 1 - 4. It is clear by the construction of J that Constraints 1-4 are satisfied.

2. Constraint 5. Recall Sij = {pr ∈ P : rank(si, pr) ≤ rank(si, pj)} is the set of projects
ranked at least as highly as pj in si’s preference list. Let γij = 1−

∑
pr∈Sij xir. We must

show that whenever γij = 1, αij + βij ≥ 1. Assume γij = 1, that is si is unassigned
or would prefer to be assigned to pj than to M(pj). As M is stable we know that
condition (*) of Lemma 6.2.1 is satisfied. Therefore αij + βij ≥ 1 by construction.
This directly satisfies Constraint 5.

6.2. IP model and experiments for SPA-ST 159

3. Constraint 6. Recall that for student si and lecturer lk, Tik is the set of students ranked
at least as highly as student si in lecturer lk’s preference list, not including si. As-
sume αij = 1. Then, by definition, we know that lecturer lk is full and prefers their
worst ranked assignee to si, or is indifferent between them. Therefore, the LHS of the
inequality must equal dk and so this constraint is satisfied.

4. Constraint 7. Recall that Tijk is the set of students ranked at least as highly as student
si in lecturer lk’s preference list, such that the project pj is acceptable to each student.
Similar to above, assume βij = 1. Then, by definition, we know that project pj is
full and lk prefers their worst ranked assignee in M(pj) to si, or is indifferent between
them. Therefore, the LHS of the inequality must equal cj and so this constraint is also
satisfied.

We have shown that the assignment of values to x, α and β satisfy all the constraints in J ,
thus if there is a stable matching M in I , then there is a feasible solution of J .

Conversely, we now show that a feasible solution of J corresponds to a stable matchingM in
I . Let x, α and β be a feasible solution of J . For each xij variable in J , if xij = 1 then add
pair (si, pj) to M in I . It is now shown that this assignment of students to projects satisfies
the definition of a stable matching M in I .

1. The following constraints are clearly satisfied by Constraints 1-4:

• A student si may be assigned to a maximum of 1 project;

• A student si may only be assigned to a project that they find acceptable;

• The number of students assigned to project pj is less than or equal to cj;

• The number of students assigned to projects offered by lecturer lk is less than or

equal to dk.

2. M is stable. Assume for contradiction that there exists a blocking pair (si, pj) ∈ M .
Then by Lemma 6.2.1, neither of the sub-conditions of condition (*) can be true. Both
of these sub-conditions being false imply that, as Constraints 6 and 7 must be satisfied,
αij = 0 and βij = 0.

Recall γij = 1 −
∑

pr∈Sij xir.
∑

pr∈Sij xir is the number of projects that student si is
assigned to at a higher or equal ranking than pj in si’s preference list (including pj).
Since (si, pj) is a blocking pair, then it must be the case that

∑
pr∈Sij xir = 0. But

this forces γij = 1, and we know that αij and βij are equal to 0 so Constraint 5 is
contradicted.

We have shown that if there is a feasible solution of x, α and β of J , then there is a stable
matching M in I . This completes the proof.

6.2. IP model and experiments for SPA-ST 160

Corollary 6.2.3. Given an instance I of SPA-ST, let J be the IP model as defined in Figure

6.1. A maximum stable matching in I corresponds to an optimal solution in J and vice versa.

Proof. Assume M is a maximum stable matching in I . Let f = 〈x,α,β〉 be the solution
in J constructed according to the description in Theorem 6.2.2. We must show that f forms
an optimal solution of J . Firstly, since M is stable, we know by Theorem 6.2.2 that f is a
feasible solution of J . Suppose for contradiction that f is not optimal. Then there is some
solution g = 〈x′,α′,β′〉 of J in which obj(g) > obj(f), where obj(f ′) gives the objective
value of f ′. But by construction, g would translate into a stable matching M ′ such that
|M ′| = obj(g) > obj(f) = |M | in I contradicting the fact that M is maximum.

Conversely, assume f = 〈x,α,β〉 is an optimal solution in J , and let M be the stable
matching in I constructed according to the description in Theorem 6.2.2. Suppose for con-
tradiction that there is some stable matching M ′ in I such that |M ′| > |M |. Then by
construction, there must be some corresponding solution g = 〈x′,α′,β′〉 of J such that
obj(g) = |M ′| > |M | = obj(f), giving the required contradiction.

6.2.3 Experimental evaluation

6.2.3.1 Methodology

Experiments were conducted on our 3
2
-approximation algorithm and an implementation of

the IP model in Figure 6.1 using randomly-generated data, in order to measure the effects
on matching properties when changing different parameter values (including instance size,
probability of ties in preference lists and preference list lengths). Two further experiments
explored the scalability of instance size and preference list lengths. Instances were generated
using both existing and new software. The existing software is known as the Matching Algo-

rithm Toolkit and is a collaborative project developed by students and staff at the University
of Glasgow. A web application of the Matching Algorithm Toolkit, which allows access to
many of its functions was developed by Lazarov [43].

For a given SPA-ST instance, let the total project and lecturer capacities be denoted by cP and
dL, respectively. Capacities were distributed randomly over the sets of projects and lecturers,
subject to there being a maximum difference of 1 between the capacities of any two projects
or any two lecturers. The minimum and maximum size of student preference lists is given
by lmin and lmax, and ts represents the probability that a project on a student’s preference
list is tied with the next project. Lecturer preference lists were generated initially from the
student preference lists, where a lecturer lk must rank a student if a student ranks a project
offered by lk. These lists were randomly shuffled and tl denotes the ties probability for
lecturer preference lists. A linear distribution was used to make some projects more popular

6.2. IP model and experiments for SPA-ST 161

than others and in all experiments the most popular project is around 5 times more popular
than the least. This distribution influenced the likelihood of a student finding a given project
acceptable. Parameter details for each experiment are given below.

1. Increasing instance size: 10 sets of 10, 000 instances were created (labelled SIZE1, ...,
SIZE10). The number of students n1 increased from 100 to 1000 in steps of 100, with
n2 = 0.6n1, n3 = 0.4n1, cP = 1.4n1 and dL = 1.2n1. The probabilities of ties in
preference lists were ts = tl = 0.2 throughout all instance sets. Student preference list
lengths, bound by lmin = 3 and lmax = 5, also remained the same and were kept low
to ensure a wide variability in stable matching size per instance.

2. Increasing probability of ties: 11 sets of 10, 000 instances were created (labelled
TIES1, ..., TIES11). Throughout all instance sets n1 = 300, n2 = 250, n3 = 120,
cP = 420, dL = 360, lmin = 3 and lmax = 5. The probabilities of ties in student and
lecturer preference lists increased from ts = tl = 0.0 to ts = tl = 0.5 in steps of 0.05.

3. Increasing preference list lengths: 10 sets of 10, 000 instances were generated (labelled
PREF1, ..., PREF10). Similar to the TIES cases, throughout all instance sets n1 = 300,
n2 = 250, n3 = 120, cP = 420 and dL = 360. Additionally, ts = tl = 0.2. Student
preference list lengths increased from lmin = lmax = 1 to lmin = lmax = 10 in steps of
1.

4. Instance size scalability: 5 sets of 10 instances were generated (labelled SCALS1, ...,
SCALS5). All instance sets in this experiment used the same parameter values as the
SIZE experiment, except the number of students n1 increased from 10, 000 to 50, 000

in steps of 10, 000.

5. Preference list scalability: Finally, 6 sets of 10 instances were created (labelled SCALP1,
..., SCALP6). Throughout all instance sets n1 = 500 with the same values for other
parameters as in the SIZE experiment. However in this case ties were fixed at ts =

tl = 0.4, and student preference list lengths increased from lmin = lmax = 25 to
lmin = lmax = 150 in steps of 25.

For each generated instance, we ran our 3
2
-approximation algorithm and then used the IP

model to find a maximum stable matching. Additionally, we computed a minimum stable
matching using a simple adaptation of our IP model for MAX-SPA-ST. A timeout of 1800 sec-
onds (30 minutes) was imposed on each algorithm, for each instance run, with all instances of
Experiments 1, 2 and 3 completing within the timeout time. All experiments were conducted
on the machine described in Chapter 1. The operating system was Ubuntu version 17.04
with all code compiled in Java version 1.8, where the IP models were solved using Gurobi

6.2. IP model and experiments for SPA-ST 162

version 7.5.2. Each approximation algorithm instance was run on a single thread while each
IP instance was run on two threads. No attempt was made to parallelise Java garbage collec-
tion. The statistics collection program, and plot and table generation program, were written
in Python and run using Python version 3.6.1. Repositories for the software and data used in
these experiments can be found at https://doi.org/10.5281/zenodo.1183221
and https://doi.org/10.5281/zenodo.1186823 respectively.

Correctness testing was conducted over all generated instances. This consisted of checking
that the matchings produced by the approximation and IP-based algorithms adhered to (1)

capacity: each student is assigned to a maximum of 1 project, and each project and lecturer
is not assigned to more students than their given capacity; and (2) stability: no blocking
pair exists. Additionally, it was checked that each matching produced by the approximation
algorithm was at least two-thirds the size of a maximum stable matching. All correctness
tests passed successfully.

6.2.3.2 Experimental results

Experimental results can be seen in Figures 6.2, 6.3 and 6.4, and in Tables D.1, D.2, D.3,
D.4, D.5, D.6 and D.7 of Appendix D.

Figures 6.2, 6.3 and 6.4 (with associated Tables D.1, D.2 and D.3) show plots comparing the
size of matching returned by the approximation algorithm with the sizes of minimum and
maximum stable matchings and a 3

2
bound, for Experiments 1, 2 and 3 respectively. In each

of these Figures, the median values of the size of stable matchings are plotted and a 90%

confidence interval is displayed using the 5th and 95th percentile measurements.

Tables D.4, D.5 and D.6 show additional results for Experiments 1, 2 and 3 respectively.
From this point onwards an optimal matching refers to a maximum stable matching. In
these tables, ‘A’ represents statistics relating to the approximation algorithm, and ‘Min’ and
‘Max’ represent statistics relating to the IP models to find a minimum and maximum stable
matching, respectively. Column ‘Minimum A/Max’ gives the minimum ratio of approxima-
tion algorithm matching size to optimal matching size that occurred, ‘% A=Max’ displays
the percentage of times the approximation algorithm achieved an optimal result, and ‘%
A≥ 0.98Max’ shows the percentage of times the approximation algorithm achieved a result
at least 98% of optimal. The ‘Mean size’ columns are somewhat self explanatory, with sub-
columns ‘A/Max’ and ‘Min/Max’ showing the mean approximation algorithm matching size
and minimum stable matching size as a fraction of optimal. Finally, the mean time taken in
milliseconds to run each algorithm per instance is given in the last three columns. Table D.7
shows the scalability results for increasing instance sizes (Experiment 4) and increasing pref-
erence list lengths (Experiment 5). The ‘Instances completed’ column indicates the number
of instances that completed before timeout occurred. The mean time taken is also shown,

https://doi.org/10.5281/zenodo.1183221
https://doi.org/10.5281/zenodo.1186823

6.2. IP model and experiments for SPA-ST 163

where instances that did not complete within the timeout time were said to have taken the
maximum time of 30 minutes.

The main findings are summarised below.

• The approximation algorithm consistently far exceeds its 3
2

bound. Considering the
column labelled ‘Minimum A/Max’ in Tables D.4, D.5 and D.6, we see that the small-
est value was within the SIZE1 instance set with a ratio of 0.9286. This is well above
the required bound of 2

3
.

• Approximation algorithm matchings are closer in size to the maximum stable match-

ings than to the minimum stable matchings. The columns ‘A/Max’ and ‘Min/Max’
of Tables D.4, D.5 and D.6 show that, on average, for each instance set, the approx-
imation algorithm produces a solution that is within 98% of maximum and far closer
to the maximum size than to the minimum size. This may also be seen each of the
Figures 6.2, 6.3 and 6.4, where in general, the size of a stable matching output by
the approximation algorithm, indicated in blue, is far closer to the size of a maximum
stable matching (red) than the size of a minimum stable matching (green), in all cases.

• Divergence in sizes of minimum and maximum stable matchings when increasing the

probability of ties. Unlike in Figures 6.2 and 6.4 which show similar trends for mean
matching sizes produced by the approximation algorithm, and the minimum and max-
imum sized stable matchings, Figure 6.3 shows a marked divergence of the minimum
stable matching size as the probability of ties increases. With no ties in the preference
lists, all matchings are the same size (namely 284), as expected from the theory. As the
probability of ties increases, the maximum stable matching size and size of matching
from the approximation algorithm increase steadily to 294.8 and 299.5 respectively.
However, the minimum stable matching size decreases steadily to 254.8. This be-
haviour may be explained by noticing that the higher the probability of ties, the larger
the number of stable matchings that will exist. Hence there is a higher probability
that the sizes of minimum and maximum stable matchings will diverge. Interestingly
however, the decrease in size of minimum stable matchings does not have a noticeable
effect on the approximation algorithm output, as matching sizes from this algorithm
closely align with optimal.

• In Table D.7, Experiment 4 (SCALS) shows the number of instances solved within the
30-minute timeout reduced from 10 to 0 for the IP-based algorithm for MAX-SPA-ST.
However, even for the largest instance set sizes the approximation algorithm was able
to solve each instance on average within 21 seconds. For Experiment 5 (SCALP), with
a higher probability of ties and increasing preference list lengths, the IP-based algo-
rithm to find a maximum stable matching was only able to solve all the instances of one

6.2. IP model and experiments for SPA-ST 164

0 200 400 600 800 1000
n

200

400

600

800

1000

Si
ze

 o
f s

ta
bl

e
m

at
ch

in
g

Max
Approx
Min
2/3 of Max

Figure 6.2: Plot of the size of stable matching returned by the approximation algorithm, and
the minimum and maximum stable matching sizes, with increasing n, where n is the number
of men or women. A second-order polynomial has been assumed for all best-fit lines.

instance set (SCALP2) within 30 minutes each, however the approximation algorithm
took less than 0.3 seconds on average to return a solution for each instance. This shows
that the approximation algorithm is useful for either larger or more complex instances
than the IP-based algorithm can handle, motivating its use for real world scenarios.

6.2. IP model and experiments for SPA-ST 165

0.0 0.1 0.2 0.3 0.4 0.5
ts = tl

180

200

220

240

260

280

300
Si

ze
 o

f s
ta

bl
e

m
at

ch
in

g

Max
Approx
Min
2/3 of Max

Figure 6.3: Plot of the size of stable matching returned by the approximation algorithm, and
the minimum and maximum stable matching sizes, with increasing probability of ties. A
second-order polynomial has been assumed for all best-fit lines.

1 2 3 4 5 6 7 8 9 10
lmin = lmax

150

175

200

225

250

275

300

Si
ze

 o
f s

ta
bl

e
m

at
ch

in
g

Max
Approx
Min
2/3 of Max

Figure 6.4: Plot of the size of stable matching returned by the approximation algorithm, and
the minimum and maximum stable matching sizes, with increasing student preference list
length. A second-order polynomial in log(lmin) has been assumed for all best-fit lines.

6.3. Load balancing in SPA-STL 166

6.3 Load balancing in SPA-STL

6.3.1 Introduction

We now move on to examining lecturer load-balancing in SPA-STL. The definitions of a
load-max-balanced and load-sum-balanced matching were given in Section 6.1.1. Some mo-
tivation for studying lecture load balancing was given in Section 6.1.2 and we provide further
motivation for studying load-balanced matchings (as opposed to only load-max-balanced or
load-sum-balanced matchings) in the next section.

6.3.2 Motivation for studying load-balanced matchings

We now show, using examples, that a load-max-balanced matching may have an arbitrarily
large load-sum-balanced score and vice versa. Let I0 and I1 be two instances of SPA-STL,
such that all lecturers have a target and capacity of c, where c is even. For both instances,
there are n3 projects and lecturers, such that each lecturer supervises one project, where n3

is also even. In I0, let there be n3c students, each of whom ranks every project, except for
the project of lecturer l1. Similarly, in I1, let there be n3c

2
students, each of whom ranks every

project. In both instances, lecturers rank all students who rank them. Table 6.1 gives exam-
ples of lecturer allocations for load-max-balanced matchings in I0, and load-sum-balanced
matchings in I1.

In I0, it is not possible for lecturer l1 to gain any allocations, and so the minimum load-
max-balanced score over all matchings inM is c. The lecturer allocations for matchings M1

and M2 in I0 are shown in Table 6.1a. Matching M1 has zero allocations for all lecturers
and matching M2 has zero allocations for lecturer l1, with all other lecturers reaching their
targets. Hence, both M1 and M2 are load-max-balanced matchings. Despite this, M1 has
a significantly worse load-sum-balanced score of rs(M1) = n3c compared to that of M2,
which is rs(M2) = c.

In I1, any matching M that allocates all n3c
2

students to projects will be a load-sum-balanced
matching. This is because, no matter how the students are distributed, the load-sum-balanced

6.3. Load balancing in SPA-STL 167

Lecturer dk = tk |M1(lk)| |M2(lk)|
l1 c 0 0
l2 c 0 c
...
ln3 c 0 c

rm(M): c c
rs(M): n3c c

(a) Possible load-max-balanced scores for two different matchings M1 and M2 in I0.

Lecturer dk = tk |M3(lk)| |M4(lk)|
l1 c c c/2
...
ln3/2 c c c/2
ln3/2+1 c 0 c/2
...
ln3 c 0 c/2

rm(M): c c/2
rs(M): n3c/2 n3c/2

(b) Possible load-sum-balanced scores for two different matchings M3 and M4 in I1.

Table 6.1: Examples of lecturer allocations in I0 and I1.

score of such a matching will always be∑
lk∈L

(tk − |M(lk)|) =
∑
lk∈L

tk −
∑
lk∈L

|M(lk)|

=
∑
lk∈L

(tk)− |M |

≥ n3c−
n3c

2

=
n3c

2
.

Table 6.1b shows the lecturer allocations for matchings M3 and M4 in I1. Matching M3 has
c allocations for half of the lecturers and 0 allocations for the other half. Matching M4 has
c/2 allocations for all of the lecturers. Since all n3c

2
students are assigned in both matchings,

M3 and M4 are load-sum-balanced. However, the load-max balanced score of M3 is twice
as large as the load-max-balanced score of M4 (rm(M3) = c compared to rm(M4) = c

2
).

This motivates the study of a matching in which both notions of optimality are adhered
to and is defined formally as follows. A matching M is load-balanced if it is both a
load-max-balanced matching and a load-sum-balanced matching. Thus, a load-balanced

matching is a matching M such that rm(M) = min
M ′∈M

max
lk∈L
||M(lk)| − tk| and rs(M) =

6.3. Load balancing in SPA-STL 168

min
M ′∈M

∑
lk∈L ||M(lk)| − tk|. We show in Section 6.3.3 that a load-balanced matching must

exist, and present a polynomial-time algorithm for returning such a matching in an instance
of SPA-STL. Additionally, we show that with a small change to the algorithm we are able to
return a maximum load-max-balanced matching in polynomial time.

Note that in all of the load balancing optimality definitions, the position of a project on
a student’s preference list and the position of a student on a lecturer’s preference list are
irrelevant. However, in Section 6.3.4 we look at the complexity of finding optimal matchings
of these types over the set of all stable matchingsMS . Hence we define these objectives in
the SPA-STL setting which includes ordered preference lists for both students and lecturers.

Due to the irrelevance of the preference list orderings to the results we present in Section
6.3.3, these results are also applicable to SPA-STL instances in which both students and
lecturers have dichotomous preferences (i.e., students (lecturers) rank projects (students) as
either acceptable or unacceptable and all acceptable agents are essentially tied). However,
since the number of students allocated by these algorithms is not necessarily maximised,
even in this reduced instance, it is not true to say that a resultant matching is optimal for
students.

6.3.3 Load balancing algorithms

6.3.3.1 Introduction

In this section we first study the simpler problem of finding a load-sum-balanced matching.
Then, we extend our algorithm for finding such a matching to the problem of finding a load-
balanced matching and a maximum load-max-balanced matching. Let I be an instance of
SPA-STL.

6.3.3.2 Load-sum-balanced matchings

We show that the problem of finding a load-sum-balanced matching is solvable, using a
network flow approach, inO((n1+m+n2+n3) min{n1, tsum}) time where tsum =

∑
lk∈L tk.

First, we show that no lecturer gains more than their target number of allocations in any
load-sum-balanced matching.

Lemma 6.3.1. For instance I , let M be a load-sum-balanced matching. Then, there is no

lecturer lk ∈ L such that |M(lk)| > tk.

Proof. Assume for contradiction that in M there is some lecturer lk with |M(lk)| > tk.
Construct matching M ′ from M by removing any |M(lk)| − tk students from projects that

6.3. Load balancing in SPA-STL 169

lk offers. Since we are only removing student-project pairs from M to reach M ′, it is not
possible to break capacity constraints of any agents, therefore M ′ is also a valid matching.
Additionally, due to the removals from the matching, the load-sum-balanced score has re-
duced from rs(M) to rs(M ′) = rs(M)− (tk−|M(lk)|). But then rs(M ′) < rs(M) meaning
M is not a load-sum-balanced matching, a contradiction.

Recall the definitions of a network and flow given in Chapter 4. We convert an instance I
of SPA-STL into a network N(I) as follows. First, each student, project and lecturer forms a
vertex. Let vsi , vpj and vlk denote the vertices of student si, project pj and lecturer lk. Two
additional vertices are added, namely, a source vertex s and a sink vertex t. The following
edges are then added to N(I).

• Edge (s, vsi) with capacity c(s, vsi) = 1 for all si ∈ S;

• Edge (vsi , vpj) with capacity c(vsi , vpj) = 1 for all si ∈ S and pj ∈ P such that si
finds pj acceptable;

• Edge (vpj , vlk) with capacity c(vpj , vlk) = cj for all pj ∈ P such that pj is offered by
lecturer lk;

• Edge (vlk , t) with capacity c(vlk , t) = tk for all lk ∈ L.

The flow across each edge is initially set to 0. An example of this transformation is given as
instance I2 of SPA-STL and its associated network N(I2) in Figure 6.5. As in the network
diagrams of Chapter 4, in Figure 6.5, each edge e has a pair of associated integers e1/e2
where e1 is the flow over e and e2 is the capacity of e.

The transformation of a flow in N(I) to a load-sum-balanced matching in I and vice versa,
is now described. A flow f in N(I) may be converted to a load-sum-balanced matching M
in I by adding (si, pj) to M for each (si, pj) ∈ S × P where f(vsi , vpj) = 1. Let M be
a load-sum-balanced matching in I . M may be converted into a flow f by adding a flow
of 1 to edges (s, vsi), (vsi , vpj), (vpj , vlk) and (vlk , t) in N(I) for each (si, pj) ∈ M where
lecturer lk supervises project pj . Note that this cannot contravene the capacities on (vlk , t)

edges since no lecturer in M can have a more allocations than their target, by Lemma 6.3.1.

We now show that we are able to find a load-sum-balanced matching in O((n1 + m + n2 +

n3) min{n1, tsum}) time where tsum =
∑

lk∈L tk.

The algorithm to find a load-sum-balanced matching (Algorithm Load-Sum-Bal) works as
follows. First, create the network N(I), as described above. Then, find the max flow f

through N(I), using a Max Flow Algorithm, and return a matching M created from f as
described above. Theorem 6.3.2 shows that Algorithm Load-Sum-Bal produces a load-
sum-balanced matching in O((n1 +m+ n2 + n3) min{n1, tsum}) time.

6.3. Load balancing in SPA-STL 170

Student preferences:
s1: p2 (p1 p5)
s2: p2 p5
s3: p3 p4
s4: (p3 p4)
s5: p5 p2 p1
s6: p4 p3

Project details:
p1: lecturer l1, c1 = 2
p2: lecturer l1, c2 = 1
p3: lecturer l2, c3 = 2
p4: lecturer l3, c3 = 1
p5: lecturer l3, c3 = 3

Lecturer preferences:
l1: (s3 s2) s5
l2: s2
l3: s2 s4 s5

t1 = d1 = 3
t2 = 2, d2 = 3
t3 = d3 = 3

(a) SPA-STL instance I2.

s t

s1

s2

s3

s4

s5

s6

p1

p2

p3

p4

p5

l1

l2

l3

0/2

0/1

0/2

0/1

0/3

0/3

0/2

0/3

(b) Network N(I2) created from instance I2 of SPA-STL. All source-student and student-
project edges are assumed to have label ‘0/1’.

Figure 6.5: SPA-STL instance I2 and associated network N(I2).

6.3. Load balancing in SPA-STL 171

Theorem 6.3.2. For instance I , Algorithm Load-Sum-Bal finds a load-sum-balanced match-

ing M in O((n1 +m+ n2 + n3) min{n1, tsum}) time where tsum =
∑

lk∈L tk.

Proof. Let N(I) be the network created during Algorithm Load-Sum-Bal’s execution, and
let f be the final max flow in N(I) output by the Ford-Fulkerson Algorithm [17]. Let f cor-
respond to matching M where rs(M) =

∑
lk∈L tk− val(f). Suppose for a contradiction that

M is not a load-sum-balanced matching. Then there exists some other load-sum-balanced
matching Mopt with rs(Mopt) < rs(M). From Lemma 6.3.1, no lecturer can have an alloca-
tion greater than their target inMopt, and so by the process outlined above, let fopt be the flow
corresponding toMopt inN(I). Then, by construction, rs(Mopt) =

∑
lk∈L tk−val(fopt). But

then, rs(Mopt) < rs(M), which implies that

∑
lk∈L

tk − val(fopt) <
∑
lk∈L

tk − val(f)

and hence val(fopt) > val(f). Thus f is not a max flow in N(I) and M would not have been
returned by Algorithm Load-Sum-Bal, a contradiction.

Algorithm Load-Sum-Bal requires only one execution of the Ford-Fulkerson Algorithm,
taking O(|E|fmax) time, where fmax is the value of the maximum flow through the network.
Since there are n1 edges from the source to each student vertex, m edges between student
and project vertices, n2 edges between project and lecturer vertices, and n3 edges between
lecturer vertices to the sink, we have a total of |E| = n1 + m + n2 + n3 edges in N(I).
Hence the total time complexity is given by O((n1 + m + n2 + n3) min{n1, tsum}) time
where tsum =

∑
lk∈L tk.

6.3.3.3 Load-balanced matchings

In this section, we show how to extend Algorithm Load-Sum-Bal to find a load-balanced
matching in O(tmaxn3 + (n1 + m + n2 + n3) min{n1, tsum}) time where tmax = max{tk :

lk ∈ L} and tsum =
∑

lk∈L tk. In the next section, we show how to find a maximum load-
max-balanced matching in the same time complexity.

Algorithm Load-Bal to find a load-balanced matching proceeds as follows. First we create
the network N(I) as detailed in the previous section, compute the highest target tmax among
all lecturers and set a flow f to have value zero over the network N(I). A variable rz
is initialised to 0. Over tmax rounds (Line 5 of Algorithm 6.1) we update the capacity of
the lecturer-sink edges as follows. In round r we try to find a saturating flow that would
correspond to a matching with a load-max-balanced score of tmax − r for r ∈ {1, ..., tmax}.
For lecturer lk in round r, edge (vlk , t) is set to have a capacity of tk − (tmax − r) when
0 ≤ tk− (tmax− r) and a capacity of 0 when tk− (tmax− r) < 0. The variable rz is updated

6.3. Load balancing in SPA-STL 172

to r on each iteration, which will either equal the value of r when we break out of the for
loop or tmax if the for loop terminates naturally. Using the Ford-Fulkerson Algorithm [17]
we then augment f with respect to an N(I) updated with the new edge bounds described
above, starting from our existing flow. If we are able to reach a saturating flow f , where
all lecturer-sink edges are saturated, then we continue to the next round. If no such flow
is found, then we break out of the for loop, and perform one final augmentation of f with
respect to N(I) (as long as rz 6= tmax) such that the capacity of each (vlk , t) edge is tk.
Finally, we return matching M created from f on Lines 21 and 22.

Algorithm 6.1 Load-Bal(I), returns a load-balanced matching for an instance of SPA-STL.
Require: An instance I of SPA-STL.
Ensure: Returns a load-balanced matching M of I .

1: Create network N(I) . Described in the accompanying text.
2: tmax ← max{tk : lk ∈ L}
3: f ← zero flow through N(I)
4: rz ← 0
5: for r in {1, ..., tmax} do
6: for (vlk , t) ∈ N(I) do
7: c(vlk , t)← max{0, tk − (tmax − r)}
8: end for
9: rz ← r

10: f ← augment(f,N(I)) . Augment f to a maximum flow in N(I).
11: if

∑
lk∈L f(vlk , t) 6=

∑
lk∈L c(vlk , t) then . If f is not a saturating flow.

12: break
13: end if
14: end for
15: if rz 6= tmax then
16: for (vlk , t) ∈ N(I) do
17: c(vlk , t)← tk
18: end for
19: f ← augment(f,N(I)) . Augment f to a maximum flow in N(I).
20: end if
21: Create M from f . Described in the accompanying text.
22: return M

Figure 6.6 shows the state of N(I2) after the Max Flow algorithm has been run for round 2,
and the final augmentation of f on Line 19. In these figures, a bold line indicates a non-zero
flow over an edge. Since all source-student and student-project edges have capacity 1, thin
and bold lines over source-student and student-project edges represent a flow of value 0 and
1 respectively. In Figure 6.6a we can see that in round 2, no saturating flow has been found.
Hence, at this stage of Algorithm Load-Bal, we break out of the for loop on Line 12. Since
rz = 2, we have rz 6= tmax, and so the final augmentation on Line 19 is executed. Figure
6.6b shows the state of N(I) after this final augmentation, when each lecturer-sink edge
(vlk , t) has a capacity of tk. Matching M associated with the final flow f would be created

6.3. Load balancing in SPA-STL 173

on Line 21, giving M = {(s1, p1), (s2, p2), (s3, p3), (s4, p3), (s5, p5)} with rs(M) = 3 and
rm(M) = 2.

Theorems 6.3.6 and 6.3.8 shows that Algorithm Load-Bal produces a load-balanced match-
ing and runs in O(tmaxn3 +(n1 +m+n2 +n3) min{n1, tsum}) time where tmax = max{tk :

lk ∈ L} and tsum =
∑

lk∈L tk. In order to prove this we first define a reduced load-

max-balanced matching, that is, a load-max-balanced matching in which each lecturer gains
max{0, tk−rm(Mopt)} allocations (whereMopt is a load-max-balanced matching), and show
that it may be constructed from a load-max-balanced matching in polynomial time in Lemma
6.3.4. Next, in Lemma 6.3.5, we show that there is a 1-1 correspondence between reduced
load-max-balanced matchings in I and saturating flows of N(I) where each (vlk , t) edge has
capacity max{0, tk − rm(Mopt)}.

Definition 6.3.3. A reduced load-max-balanced matching is a load-max-balanced matching

such that |M(lk)| = max{0, tk − rm(Mopt)} for all lk ∈ L, where Mopt is a load-max-

balanced matching.

Lemma 6.3.4. Given a load-max balanced matching Mopt, we may construct in linear time,

a reduced load-max balanced matching M ′
opt from Mopt such that rm(M ′

opt) = rm(Mopt).

Proof. We obtain M ′
opt from Mopt as follows. For each lecturer lk in Mopt, remove any

students from projects supervised by lk until lk has max{0, tk−rm(Mopt)} allocations. Since
we have only removed student-project pairs from a valid matching, no capacity constraints
can be contravened and therefore M ′

opt is also a valid matching. Additionally, the number of
allocations for each lecturer is within rm(Mopt) of their target, henceM ′

opt is also a load-max-
balanced matching. The process of constructing M ′

opt requires only a single pass through
the student-project allocations of each lecturer. Therefore we can construct M ′

opt in linear
time.

Lemma 6.3.5. Let Mopt be a load-max-balanced matching in I . There is a 1-1 correspon-

dence between reduced load-max-balanced matchings in I and saturating flows of N(I)

where for each lecturer lk, the edge (vlk , t) has capacity max{0, tk − rm(Mopt)}.

Proof. Let M be a reduced load-max-balanced matching in I . We construct f as follows.
For each (si, pj) pair in M , where pj is supervised by lecturer lk, we add a flow of 1 to edges
(s, vsi), (vsi , vpj), (vpj , vlk) and (vlk , t). Clearly, for each such pair, this transfers one unit of
flow into and out of vertices vsi , vpj and vlk meaning that flow conservation is maintained.
Capacities of students and projects inM must be respected and correspond directly to the ca-
pacities of student-project and project-lecturer edges in N(I). Finally, since M is a reduced
load-max-balanced matching, each lecturer lk has |M(lk)| = max{0, tk−rm(M)} assignees,
where rm(M) = rm(Mopt). This corresponds exactly to a flow of max{0, tk − rm(M)}
through each (vlk , t) edge with capacity max{0, tk − rm(M)}. Hence f is a saturating flow.

6.3. Load balancing in SPA-STL 174

s t

s1

s2

s3

s4

s5

s6

p1

p2

p3

p4

p5

l1

l2

l3

1/2

1/1

1/2

0/1

1/3

2/2

1/1

1/2

(a) Flow through N(I2) after round 2.

s t

s1

s2

s3

s4

s5

s6

p1

p2

p3

p4

p5

l1

l2

l3

1/2

1/1

2/2

0/1

1/3

2/3

2/2

1/3

(b) Flows through N(I2) after the final augmentation on Line 19 of Algorithm Load-Bal.

Figure 6.6: Flows through N(I2) during the execution of Algorithm Load-Bal.

6.3. Load balancing in SPA-STL 175

Now, let f be a saturating flow of N(I). M is constructed by adding (si, pj) to M for
each (si, pj) ∈ S × P where f(vsi , vpj) = 1. Since f is a saturating flow, each of the
lecturer-sink edges must have a flow equal to their capacity. But then by construction, the
corresponding (si, pj) pairs will produce a matching M where each lecturer lk ∈ L has
exactly max{0, tk − rm(M)} allocations. Additionally, capacities of students and projects
will have been enforced by the network and so M is a reduced load-max-balanced matching.

Theorem 6.3.6. Algorithm Load-Bal always produces a load-balanced matching.

Proof. There is one point in Algorithm 6.1’s execution where a matching may be returned,
namely Line 22. We show that this matching must be both a load-max-balanced matching
and a load-sum-balanced matching.

If tmax = 0, then clearly the algorithm performs no augmentations of f , and we exit with
a matching M corresponding to a flow with value 0, which is optimal. From this point on,
assume that tmax > 0.

Let M be the matching returned on Line 22. Then one of the following cases must be true.

• rz = tmax and the final augmentation of f on Line 10 for round rz = tmax produced a
saturating flow;

• rz = tmax and the final augmentation of f on Line 10 for round rz = tmax produces a
non-saturating flow;

• rz 6= tmax and the final augmentation of f on Line 10 for round rz produced a non-
saturating flow;

In the first two cases, the final max flow is calculated on Line 10 since rz = tmax and so we
cannot enter the if statement on Line 15. In the third case, the final max flow is calculated
on Line 19. Note that, for the third case, any further flow augmentation on Line 19 may only
improve lecturer outcomes up to their target number of allocations. It also cannot increase the
flow through all lecturer-sink edges, or the most recent augmentation on Line 10 would have
found a saturating flow. Therefore, the load-max-balanced score of the associated matching
M is unchanged by the augmentation on Line 19.

In the first case, we have a saturating flow f corresponding to a matchingM where rm(M) =

0. But then it is also be the case that rs(M) = 0, and so we would have returned a load-
balanced matching.

In the second and third case, we have augmented to a non-saturating flow f in round rz on
Line 10. Hence, no saturating flow was found in N(I) when lecturer-sink capacities are
given by max{0, tk − (tmax − r)} = max{0, tk − rm(M) + 1} for each lecturer lk ∈ L.

6.3. Load balancing in SPA-STL 176

Assume for contradiction that there exists a load-max-balanced matchingMopt with rm(Mopt) <

rm(M). By Lemma 6.3.4, we know that there must exist a reduced load-max-balanced
matching M ′

opt with rm(M ′
opt) = rm(Mopt). Then, by Lemma 6.3.5, M ′

opt corresponds to a
saturating flow f ′ ofN(I) where lecturer-sink capacities are given by max{0, tk−rm(Mopt)}
for each lecturer lk ∈ L. Since saturating flow f ′ exists, there must also be a saturating flow
for any N(I) with lecturer-sink capacities less than or equal to max{0, tk − rm(Mopt)} for
each lecturer lk ∈ L. Notice that for all lk ∈ L, since rm(Mopt) < rm(M), we have tk −
rm(Mopt) > tk−rm(M), implying that tk−rm(Mopt) ≥ tk−rm(M)+1. But then, network
N(I) in round rz has lecturer-sink capacities less than or equal to max{0, tk − rm(Mopt)},
contradicting the fact that no saturating flow was found in round rz. Since the augmenta-
tion on Line 19 does not change the load-max-balanced score of the output matching M ,
Algorithm Load-Bal always produces a load-max-balanced matching.

It remains to show that M is a load-sum-balanced matching. In all cases above, we always
augment f to a maximum flow overN(I) such that each lecturer-sink edge (vlk , t) has capac-
ity tk. This happens on Line 10 for the first and second case, and Line 19 for the third case.
Since Algorithm Load-Sum-Bal comprises finding a max flow over N(I) with precisely
these capacities, M is also a load-sum-balanced matching, by Theorem 6.3.2.

Therefore Algorithm Load-Bal always produces a load-balanced matching.

Corollary 6.3.7. A load-balanced matching always exists. Furthermore, a matching M that

has minimum load-sum-balanced score taken over all load-max-balanced matchings is a

load-balanced matching. Furthermore, a matchingM that has minimum load-max-balanced

score taken over all load-sum-balanced matchings is a load-balanced matching.

Theorem 6.3.8. Algorithm Load-Bal runs inO(tmaxn3+(n1+m+n2+n3) min{n1, tsum})
time where tmax = max{tk : lk ∈ L} and tsum =

∑
lk∈L tk.

Proof. The Ford-Fulkerson Algorithm [17] runs inO(|E|fmax) time where fmax is the maxi-
mum flow through the network. As in Theorem 6.3.2, there are a total of |E| = n1+m+n2+

n3 edges inN(I). Although we restart the Ford-Fulkerson Algorithm a number of times over
Algorithm Load-Bal’s execution, we always begin from the previous flow. This is possible
since the flow found using the Ford-Fulkerson Algorithm always increases in increments of
one. Therefore, the time complexity of finding maximum flows over the whole algorithm
is equal to finding the maximum flow once with maximum possible flow. This corresponds
to O((n1 + m + n2 + n3) min{n1, tsum}) time where tsum =

∑
lk∈L tk. Additionally, there

are a maximum of tmax rounds from Line 5, giving a total time complexity of O(tmaxn3) to
update lecturer capacities on each round, where tmax = max{tk : lk ∈ L}. Hence Algorithm
Load-Bal runs in O(tmaxn3 + (n1 +m+ n2 + n3) min{n1, tsum}) time.

6.3. Load balancing in SPA-STL 177

6.3.3.4 Maximum load-max-balanced matchings

The algorithm to find a maximum load-max-balanced matching (Algorithm Load-Max-Bal-
Max), requires an amendment to Algorithm Load-Bal as follows. Replace Lines 15 to 22
of Algorithm 6.1 with the pseudocode outlined in Algorithm 6.2. On Lines 15 to 17 of
Algorithm 6.2, we test if the matching M created from the existing flow f has a load-max-
balanced score of 0. If it does, then M is optimal and it is returned. If not, then we perform
one final augmentation of f on N(I) where the capacity of each lecturer-sink edge (vlk , t) is
set to min{tk + rm(M), dk}. A bound for each lecturer of tk + rm(M), up to a maximum
of dk, allows each lecturer to achieve their maximum possible number of allocations, whilst
keeping within the load-max-balanced score. Following this final augmentation, we return
the matching M created from f .

Algorithm 6.2 Max-Load-Max-Bal(I), adaptation to Algorithm 6.1 which returns a maxi-
mum load-max-balanced matching for an instance I of SPA-STL (replacing Lines 15 to 22 of
Algorithm 6.1).
Require: An instance I of SPA-STL.
Ensure: Returns a maximum load-max-balanced matching of I .
14: Create M from f
15: if rm(M) = 0 then
16: return M
17: end if
18: for (vlk , t) ∈ N(I) do
19: c(vlk , t)← min{tk + rm(M), dk}
20: end for
21: f ← augment(f,N(I)) . Augment f to a maximum flow in N(I).
22: Create M from f
23: return M

Recall Figure 6.6 shows the state of N(I2) after the Max Flow algorithm has been run for
round 2 and the final augmentation of f on Line 19 for Algorithm Load-Bal. In Algo-
rithm Load-Max-Bal-Max, we replace Figure 6.6b with Figure 6.7, which shows the flow
f through N(I2) after a final augmentation on Line 21. Recall that in these figures, a bold
line indicates a non-zero flow over an edge, and that all source-student and student-project
edges have capacity 1. Thus thin and bold lines over source-student and student-project
edges represent a flow of value 0 and 1 respectively. In this example, the increased ca-
pacity of edge (vl2 , t) has allowed the flow to increase beyond that of Figure 6.6b, and so
M = {(s1, p1), (s2, p2), (s3, p3), (s4, p3), (s5, p5), (s6, p4)} with rm(M) = 2 is a maximum
load-max-balanced matching.

6.3. Load balancing in SPA-STL 178

s t

s1

s2

s3

s4

s5

s6

p1

p2

p3

p4

p5

l1

l2

l3

1/2

1/1

2/2

1/1

1/3

2/3

3/3

1/3

Figure 6.7: Flows throughN(I2) after the final augmentation on Line 21 of Algorithm Load-
Max-Bal-Max.

Theorem 6.3.9. Algorithm Load-Max-Bal-Max produces a maximum load-max-balanced

matching in O(tmaxn3 + (n1 + m + n2 + n3) min{n1, tsum + n3rm}) time where tmax =

max{tk : lk ∈ L}, tsum =
∑

lk∈L tk and rm is the load-max-balanced score of a load-max-

balanced matching.

Proof. There are two points in Algorithm 6.2 where we return a matching, namely, Lines 16
and 23.

Let M1 be the matching returned on Line 16. Then rm(M1) = 0 and so it is not possible to
increase the number of allocations for any lecturer whilst still retaining a load-max-balanced
matching. Hence, M1 must be a maximum load-max-balanced matching.

LetM2 be the matching returned on Line 23. By the argument given in the proof of Theorem
6.3.6, we know that M created on Line 14 is a load-max-balanced matching. Then since the
capacity of each lecturer-sink edge (vlk , t) is set to equal tk + rm(M), the augmentation of f
on Line 21 will also be associated with a load-max-balanced matching. Additionally, since
f is a max flow, it must be associated with a load-max-balanced matching with maximum
size. Hence, M2 is a maximum load-max-balanced matching.

To calculate the time complexity of Algorithm Load-Max-Bal-Max we may use almost sim-
ilar reasoning to that of Theorem 6.3.8. However, note that the maximum flow we may now

6.3. Load balancing in SPA-STL 179

Student preferences:
s1: p1

Project details:
p1: lecturer l1, c1 = 1

Lecturer preferences:
l1: s1 t1 = 0, d1 = 1

Figure 6.8: SPA-STL instance I3.

augment to is given by fmax = tsum +n3rm where tsum =
∑

lk∈L tk and rm is the load-max-
balanced score of a load-max-balanced matching. Hence we have an overall time complexity
for Algorithm Load-Max-Bal-Max ofO(tmaxn3+(n1+m+n2+n3) min{n1, tsum+n3rm})
time where tmax = max{tk : lk ∈ L}.

6.3.4 Stability with load balancing

Recall the definition of SPA-S given in Section 2.5.2.1. The Student-Project Allocation prob-
lem with lecturer preferences over Students and Lecturer targets (SPA-SL) extends SPA-S to
include lecturer targets. The definition of stability in SPA-SL is the same as in the SPA-S sce-
nario. By the Unpopular Projects Theorem [6] (introduced in Section 2.5.2.1), each lecturer
is assigned the same number of students in any instance of SPA-S, and also therefore SPA-SL.
Hence, any stable matching in SPA-SL must also be a load-max-balanced stable matching, a
load-sum balanced stable matching and a load-balanced stable matching.

We now look at the problem of finding these types of stable matchings in SPA-STL.

Unlike the SPA-S case, stable matchings in SPA-ST (and therefore SPA-STL) may be different
sizes, and lecturers may have different numbers of students in different stable matchings.
Additionally, for a given instance, there may be no load-max-balanced stable matching, load-
sum-balanced stable matching or load-balanced stable matching such that all lecturers have
a number of allocations less than or equal to their targets. This is in contrast to the case
where stability is not present. Instance I3 in Figure 6.8 shows a simple example of this. In
I3 there is only one stable matching, namely M = {(s1, p1)}. Thus M must be the load-
max-balanced stable matching, load-sum-balanced stable matching and load-balanced stable
matching. However, l1 has a target of 0 allocations and therefore this example shows that
it is possible for optimal stable matchings of these types to exist where lecturers have more
allocations than their targets. This is in contrast with the load-max-balanced, load-sum-
balanced and load-balanced matchings of I3 which would be empty, and hence no lecturer
with more allocations than their targets would exist relative to these matchings.

We now study the complexity of finding a load-max-balanced stable matching, load-sum-
balanced stable matching and load-balanced stable matching in SPA-STL.

Let LMBS-SPA-STL be the problem of finding a load-max-balanced stable matching in an
instance I of SPA-STL and let LSBS-SPA-STL be the problem of finding a load-sum-balanced
stable matching in an instance I of SPA-STL. Finally, let LBS-SPA-STL be the problem of

6.3. Load balancing in SPA-STL 180

finding a load-balanced stable matching in an instance I of SPA-STL. We define three special-
case decision problems.

Definition 6.3.10.

• We define LMBS-SPA-STL-D, the decision version of LMBS-SPA-STL, as follows. An

instance I of LMBS-SPA-STL-D comprises an instance I of SPA-STL and a non-negative

integerK. The problem is to decide whether there exists a stable matchingM in I such

that rm(M) ≤ K.

• We define LSBS-SPA-STL-D, the decision version of LSBS-SPA-STL, as follows. An

instance I of LSBS-SPA-STL-D comprises an instance I of SPA-STL and a non-negative

integerK. The problem is to decide whether there exists a stable matchingM in I such

that rs(M) ≤ K.

• We define LBS-SPA-STL-D, the decision version of LBS-SPA-STL, as follows. An in-

stance I of LBS-SPA-STL-D comprises an instance I of SPA-STL and non-negative

integers K and K ′. The problem is to decide whether there exists a stable matching

M in I such that rm(M) ≤ K and rs(M) ≤ K ′.

Theorem 6.3.11. LMBS-SPA-STL-D is NP-complete, even if K = 0, students preference

lists are strictly ordered and of length 3 and each lecturer’s preference list is either strictly

ordered and of length 3, or, is a tie of length 2.

Proof. First, we show that LMBS-SPA-STL-D is in NP. Given a matching M it is possible
to determine whether M is stable in O(m) time. This is done by iterating over preference
lists of each student si, and determining whether each si-project pair on their preference
list constitutes a blocking pair, with respect to M , as defined in Section 2.5.2.1. The load-
max-balanced score of M may also be calculated and compared to 0 in O(n3) time. Thus
LMBS-SPA-STL-D is in NP.

The Stable Marriage problem with Ties and Incomplete lists (SMTI) was described in Section
2.2.3. Let (3, 3)-COM-SMTI be the problem of finding a maximum stable matching in an
instance I ′ of SMTI, such that each man’s preference list is strictly ordered and of length 3,
and, each woman’s preference list is either strictly ordered and of length 3, or is a tie of length
2. We define (3, 3)-COM-SMTI-D a special-case decision problem of (3, 3)-COM-SMTI, as
follows. An instance I ′ of (3, 3)-COM-SMTI-D comprises an instance I ′ of SMTI, with the
restrictions described above. The problem is to decide whether there exists a stable matching
M ′ in I ′ such that |M ′| = n, where n is the number of men or women. (3, 3)-COM-SMTI-D

is NP-complete [57].

We reduce from (3, 3)-COM-SMTI-D as follows.

6.3. Load balancing in SPA-STL 181

First, we construct an instance I from I ′. For each man mi in I ′ add student si to I . For each
woman wj in I ′ add project pj and lecturer lj to I . For each woman wj on mi’s preference
list, we add project pj to si’s list. Similarly, for each man mi on wj’s preference list, we add
student si to lj’s list, ensuring we retain any ties. Each project pj is set to have a capacity of
1 and is supervised by lecturer lj who themselves has a target and capacity of 1.

We claim that I ′ has a stable matching M ′ of size |M ′| = n if and only if I has a stable
matching M such that rm(M) = 0.

Suppose I ′ has a stable matchingM ′ of size |M ′| = n. We create matchingM by adding pair
(si, pj) to M for each (mi, wj) ∈M ′. This must be a valid matching since students in I and
men in I ′ may only have a single allocation and projects and lecturers in I and women in I ′

may also only have a single allocation. Therefore, if no men or women are multiply assigned
in M ′, then no student, project or lecturer can be multiply assigned in M . Note that in M ,
all students are allocated one project, and all projects and lecturers are allocated one student,
by construction. We now show that M is stable. Suppose for contradiction that there is a
blocking pair (si, pj) ofM in I . Then, si would prefer to be assigned to pj thanM(si). Since
|M(lj)| = 1 by construction, and since each lecturer offers only one project, si /∈ M(lj),
and so lj would prefer to be assigned to si than M(lj) = M(pj). But, by construction, this
would translate to a pair (mi, wj) /∈ M ′ who would prefer to be allocated to each other than
their assigned partners in I ′. Hence, (mi, wj) would block M ′, a contradiction, and so M is
stable in I . By construction, we know that |M | = |M ′| = n, and so all n lecturers must have
exactly one allocation (equaling their target), giving rm(M) = 0, as required.

Conversely, suppose that I has a stable matching M such that rm(M) = 0. Create matching
M ′ by adding pair (mi, wj) to M ′ for each (si, pj) ∈ M . M ′ is a valid matching since
students in I and men in I ′ may only have a single allocation and projects and lecturers in
I and women in I ′ may also only have a single allocation. Therefore, if no student, project
or lecturer is multiply assigned in M , then no man or woman can be multiply assigned in
M ′. Now we show M ′ is stable. Suppose for contradiction that there is some pair (mi, wj)

blocking M ′ in I ′. Then, mi would prefer to be assigned to wj than M ′(mi) and wj would
prefer to be assigned to mi than M ′(wj). But, by construction, this would mean that si
would prefer to be assigned to pj than M(si). Additionally, since the capacity of lj is 1

and lj offers only one project, si /∈ M(lj), and so lj would prefer to be assigned to si than
M(lj) = M(pj). Hence, (si, pj) would block M , a contradiction, and so M ′ is stable in
I ′. We know that M has a load-max-balanced score of rm(M) = 0, therefore all lecturers
must have a one student allocated each. But since lecturers were created from women in I ′,
it must be that n = |M | = |M ′|, as required.

We have shown that I ′ has a stable matching M ′ of size |M ′| = n if and only if I has a stable
matching M such that rm(M) = 0. Since the reduction described above can be executed in

6.3. Load balancing in SPA-STL 182

polynomial time, LMBS-SPA-STL-D is NP-hard. Additionally, since LMBS-SPA-STL-D is in
NP, it follows that LMBS-SPA-STL-D is NP-complete.

Corollary 6.3.12. LSBS-SPA-STL-D is NP-complete, even if K = 0, students preference

lists are strictly ordered and of length 3 and each lecturer’s preference list is either strictly

ordered and of length 3, or, is a tie of length 2.

Proof. We may use an identical reduction to that given in Theorem 6.3.11 to show that I ′

has a stable matching M ′ of size |M ′| = n if and only if I has a stable matching M such that
rs(M) = 0.

Corollary 6.3.13. LBS-SPA-STL-D is NP-complete, even if K = 0, K ′ = 0, students pref-

erence lists are strictly ordered and of length 3 and each lecturer’s preference list is either

strictly ordered and of length 3, or, is a tie of length 2.

Proof. We may use an identical reduction to that given in Theorem 6.3.11 to show that I ′

has a stable matching M ′ of size |M ′| = n if and only if I has a stable matching M such that
rm(M) = 0 and rs(M) = 0.

6.3.5 IP models

In Section 6.3.4 we showed that the problem of finding a load-balanced stable matching was
NP-hard. In this section, we describe an IP model to solve this problem. By Corollary 6.3.7,
a load-balanced matching may be returned by either finding a matching that has minimum
load-sum-balanced score taken over all load-max-balanced matchings, or, finding a matching
that has minimum load-max-balanced score taken over all load-sum-balanced matchings.
Using this fact, we are able to find a load-balanced matching by first ensuring we have a
load-max-balanced matching and, subject to this, a load-sum-balanced matching. First we
present an IP model for finding a load-max-balanced stable matching.

6.3.5.1 IP model for a load-max-balanced stable matching

Figure 6.9 shows the IP model optimisation for finding a load-max-balanced matching. In
this model we include Constraints 1-7 from Figure 6.1 which ensure stability. In Constraints
8 and 9, we let l+k and l−k be greater than or equal to the difference between the number of
allocations a lecturer has when compared to their target, over and under the target, respec-
tively. Constraints 10 and 11 set hm be greater than or equal to the maximum of these two
values over all l+k and l−k . hm is therefore greater than or equal to the maximum absolute
difference between a lecturer’s target and their number of allocations, over all lecturers. A
load-max-balanced matching is then a matching that minimises hm.

6.3. Load balancing in SPA-STL 183

minimise: hm

subject to:

Constraints 1-7 of Figure 6.1, and

8. l+k ≥
∑
si∈S

∑
pj∈Pk

xij − tk ∀lk ∈ L

9. l−k ≥ tk −
∑
si∈S

∑
pj∈Pk

xij ∀lk ∈ L

10. hm ≥ l+k ∀lk ∈ L
11. hm ≥ l−k ∀lk ∈ L

l+k , l
−
k ∈ {−tk, ..., 2tk} ∀lk ∈ L

hm ∈ {0, ..., tm} tm = max{tk : lk ∈ L}

Figure 6.9: IP model for finding a load-max-balanced stable matching.

We now prove correctness for the IP model to find a load-max-balanced matching shown in
Figure 6.9.

Theorem 6.3.14. Given an instance I of SPA-STL, let J be the IP model as defined in Figure

6.9. A stable matching M in I corresponds to a feasible solution in J and vice versa.

Proof. By Theorem 6.2.2, we know that a stable matching in I corresponds to a feasible
solution in J and vice versa, when considering only Constraints 1-7.

We first show that a stable matching M in I corresponds to an feasible solution of J . Let
M be a stable matching in I . We construct an assignment f = 〈x,α,β, l+, l−, hm〉 of J as
follows. Set variables x, α and β as in Theorem 6.2.2. Set variables l+k to equal |M(lk)|− tk
and l−k to equal tk − |M(lk)|, for all lecturers lk. Set hm to equal the maximum of l+k and l−k
over all lk. By Theorem 6.2.2, Constraints 1-7 are satisfied. Additionally, by the assignments
of l+, l− and hm above, Constraints 8-11 are satisfied. Therefore f is a feasible assignment
of J .

Now we show that a feasible solution of J corresponds to a stable matching M in I . Let
f = 〈x,α,β, l+, l−, hm〉 be an feasible solution of J . Construct matchingM as in Theorem

6.3. Load balancing in SPA-STL 184

6.2.2, that is, for each xij variable in J , if xij = 1 then add pair (si, pj) to M in I . By
Theorem 6.2.2, M is a stable matching of I .

Therefore, a stable matching M in I corresponds to a feasible solution in J and vice versa.

Corollary 6.3.15. Given an instance I of SPA-STL, let J be the IP model as defined in Figure

6.9. A load-max-balanced stable matching M in I corresponds to an optimal solution in J

and vice versa.

Proof. Suppose M is a load-max-balanced stable matching in I . Then, from the first half of
the proof of Theorem 6.3.14, M corresponds to a feasible solution f = 〈x,α,β, l+, l−, hm〉
of J . Now, assume for contradiction that f is not optimal. Then there exists some feasible
solution g = 〈x′,α′,β′, l+′, l−′, h′m〉 of J such that h′m < hm. But, by the second half of the
proof of Theorem 6.3.14, g corresponds to a stable matching M ′ such that rm(M ′) = h′m <

hm = rm(M), contradicting the fact that M has minimum load-max-balanced score inMS .
Hence a load-max-balanced stable matching M in I corresponds to an optimal solution in J .

Conversely, suppose f = 〈x,α,β, l+, l−, hm〉 is an optimal solution of J , and by the second
half of the proof of Theorem 6.3.14, let M be the stable matching corresponding to f in I .
Assume for contradiction, that there is some other stable matching M ′ such that rm(M ′) <

rm(M). Then, by the first half of the proof of Theorem 6.3.14, M ′ corresponds to a feasible
solution g = 〈x′,α′,β′, l+′, l−′, h′m〉 of J such that h′m = rm(M ′) < rm(M) = hm, which
contradicts the fact that f is optimal. Hence an optimal solution in J corresponds to a load-
max-balanced stable matching M in I .

Therefore, a load-max-balanced stable matching M in I corresponds to an optimal solution
in J and vice versa.

Should we wish to apply subsequent optimisations to the IP model in Figure 6.9, we must
add the constraint shown in Figure 6.10 in order to ensure we return a load-max-balanced
stable matching.

12. hm ≤ rm where rm is the load-max-balanced score

Figure 6.10: IP model constraint for finding a load-max-balanced stable matching.

6.3.5.2 IP model for a load-balanced stable matching

The additional IP model constraints and objective function required to find a load-balanced
matching can be seen Figure 6.11. This is designed to be solved after the IP model in Figure

6.3. Load balancing in SPA-STL 185

minimise:
∑
lk∈L

hk

subject to:

Constraints 1-11 of Figure 6.9, and

13. hk ≥ l+k ∀lk ∈ L
14. hk ≥ l−k ∀lk ∈ L

hk ∈ {0, ..., tm} tm = max{tk : lk ∈ L},∀lk ∈ L

Figure 6.11: IP model for finding a load-balanced stable matching.

6.9 has been solved and Constraint 12 of Figure 6.10 has been added to the model. Our
objective in this model is to minimise the sum of hk variables, where hk is set to be greater
than or equal to the maximum of l+k and l−k , for each lk ∈ L.

We now prove correctness for the IP model to find a load-balanced matching shown in Figure
6.11.

Theorem 6.3.16. Given an instance I of SPA-STL, let J be the IP model as defined in Figure

6.11. A load-max-balanced stable matching M in I corresponds to a feasible solution in J

and vice versa.

Proof. By Theorem 6.3.14, we know that a stable matching in I corresponds to a feasible
solution in J and vice versa, when considering only Constraints 1− 11.

Assume instance I contains a load-max-balanced stable matching M . We first show that M
corresponds to a feasible solution in J . We construct an assignment f = 〈x,α,β, l+, l−, hm,h〉
in J where 〈x,α,β, l+, l−, hm〉 are as constructed as in the proof Theorem 6.3.14, and h
comprises the assignment of hk to equal the maximum of l+k and l−k for each lk. By Theorem
6.3.14 and Corollary 6.3.15, it is clear that constraints 1-12 are satisfied. By the assignments
of h, Constraints 13 and 14 are also satisfied. Therefore f is a feasible assignment of J .

Now we show that a feasible solution of J corresponds to a load-max-balanced stable match-
ing M in I . Let f = 〈x,α,β, l+, l−, hm,h〉 be a feasible solution of J . Construct M as

6.4. Conclusions and future work 186

in the proof of Theorem 6.2.2, on the basis of the x variables. Then by Theorem 6.3.14,
Corollary 6.3.15 and Constraint 12, M is a load-max-balanced stable matching in I .

Therefore, a load-max-balanced stable matching M corresponds to an optimal solution in J
and vice versa.

Corollary 6.3.17. Given an instance I of SPA-STL, let J be the IP model as defined in Figure

6.11. A load-balanced stable matching M in I corresponds to an optimal solution in J and

vice versa.

Proof. Suppose M is a load-balanced stable matching in I . Then, from the first half of the
proof of Theorem 6.3.16, M corresponds to a feasible solution f = 〈x,α,β, l+, l−, hm,h〉
of J . Now assume for contradiction that f is not optimal. Then there exists some solution
g = 〈x′,α′,β′, l+′, l−′, h′m,h′〉 of J such that

∑
lk∈L h

′
k <

∑
lk∈L hk. But, by the sec-

ond half of the proof of Theorem 6.3.16, g then corresponds to a load-max-balanced stable
matchingM ′ such that rs(M ′) =

∑
lk∈L h

′
k <

∑
lk∈L hk = rs(M), contradicting the fact that

M has minimum load-sum-balanced score inMS . Hence a load-balanced stable matching
M in I corresponds to an optimal solution of J .

Conversely, suppose f = 〈x,α,β, l+, l−, hm,h〉 is an optimal solution in J , and by the
second half of the proof of Theorem 6.3.16, letM be the load-max-balanced stable matching
corresponding to f in I . Assume for contradiction that there exists some other load-max-
balanced stable matching M ′ such that rs(M ′) < rs(M). Then by the first half of the proof
of Theorem 6.3.16 there must be some other solution g = 〈x′,α′,β′, l+′, l−′, h′m,h′〉 of J
such that

∑
lk∈L h

′
k = rs(M

′) < rs(M) =
∑

lk∈L hk, which contradicts the fact that f is
optimal. Hence an optimal solution of J corresponds to a load-balanced stable matching M
in I .

Therefore, a load-balanced stable matching M corresponds to an optimal solution in J and
vice versa.

6.4 Conclusions and future work

In this chapter we first presented experimental results evaluating the performance of the 3
2
-

approximation algorithm introduced in Chapter 5. We found that, in all instances tested,
the approximation algorithm constructed a stable matching within 92% of the size of opti-
mal, easily surpassing the 3

2
bound. Secondly, we presented two new efficient algorithms for

finding a load-sum-balanced matching and a load-balanced matching, and showed how the
second of these can be adapted to find a maximum load-max-balanced matching in polyno-
mial time. It remains open as to whether faster algorithms exist to find matchings of these

6.4. Conclusions and future work 187

types, and future work may also involve testing the performance of the algorithms empiri-
cally. Finally, we showed that the problems of finding a load-max-balanced stable matching,
load-sum-balanced stable matching and load-balanced stable matching are NP-hard.

We define the Hospitals/Residents problem with Ties and Hospital targets (HRTH) as a special
case of HRT in which hospitals have a target number of residents they wish to be allocated.
The NP-completeness proofs given in Section 6.3.4 for the decision problem variants of
finding a load-max-balanced stable matching, load-sum-balanced stable matching and load-
balanced stable matching may be easily adapted to the HRTH setting. It remains open to
derive approximability results for stable matchings of these types, in either HRTH or SPA-
STL. Additionally, future work may involve implementing the IP models described in this
chapter, in order to determine the effect of varying instance parameters such as instance size
and probability of ties on various load balancing properties.

188

Chapter 7

Conclusions and open problems

In this chapter, we highlight the main contributions of this thesis and discuss potential future
theoretical directions.

Two new notions of fairness for degree-based stable matchings in SMI were presented in
Chapter 3. These comprised the regret-equal stable matching, which is a stable matching
that minimises the difference in degrees between the set of men and the set of women, and
the min-regret sum stable matching, which is the stable matching that minimises the sum
of degrees of the set of men and the set of women. Polynomial-time algorithms to find
such fair stable matchings were developed, and the performance of two algorithms to find
a regret-equal stable matching was compared against an existing exponential-time enumer-
ation algorithm over randomly-generated instances. Additional experiments compared the
properties of several optimal stable matchings.

This work may be extended in a number of ways. Recall that for instances of SMI, the set of
men and the set of women have a degree and cost measure associated with them. The exist-
ing four definitions of fair stable matchings, along with the additional two described above,
complete the table of cost- and degree-based fairness definitions, summarised in Table 3.1.
This work may be extended by investigating new measures, such as the square of costs or
the square of degrees, creating new columns in Table 3.1. Further measures may take into
account other aspects of how men and women are ranked. An example of this may be a
measure that, when all men and women are listed side by side in order of matching rank,
calculates the difference in rank for each side-by-side pair. Optimisations may then include
minimising the maximum of these differences or the sum of these differences. Finding op-
timal stable matchings of these types in more general matching problems is also of interest.
As described in Section 3.8, it is an open problem as to whether there exists a polynomial-
time algorithm to find the equivalent of a sex-equal stable matching in instances of SMI-GW

and HR-GR. It would also be of interest to determine the complexity of finding various fair
stable matchings in an instance of SR in which roommates were partitioned into groups.

189

Student preferences:
s1: (p1 p2 p3)
s2: (p1 p2 p3)
s3: p3 p1 p2

Project details:
p1: lecturer l1, c1 = 1
p2: lecturer l2, c2 = 1
p3: lecturer l3, c3 = 1

Lecturer preferences:
l1: s2 (s1 s3)
l2: s2 s1 s3
l3: (s3 s2) s1

d1 = 1
d2 = 1
d3 = 1

Figure 7.1: Example of a blocking coalition C = {s2, s3} relating to stable matching M
shown in bold, in an instance I0 of SPA-ST.

In Chapter 4, we investigated profile-based stable matchings in SMI. In particular we adapted
an existing algorithm to find rank-maximal and generous stable matchings, to work with
polynomially-bounded weight vectors rather than exponential weights. This vector-based
algorithm was shown experimentally to have a far reduced memory requirement than its ex-
ponential weight counterpart. It would be interesting to determine whether improvements
could be made to the time complexity of this algorithm by showing how vector-based calcu-
lations could work with Orlin’s [64] Max Flow algorithm. Additionally, it remains open as
to whether Feder [15]’s faster algorithm for finding a rank-maximal stable matching, based
on weighted SAT, can be adapted to work in a vector-based setting. In this chapter we addi-
tionally showed that it is NP-hard to find rank-maximal or generous stable matching in SR,
even in restricted cases.

In Chapter 5 and the first half of Chapter 6 we presented a 3
2
-approximation algorithm for

MAX-SPA-ST, a new IP model for MAX-SPA-ST and evaluations of our approximation algo-
rithm. This work may be extended by developing an algorithm with an improved approxi-
mation factor, or by improving the current best inapproximability lower bound of 33

29
[74]. A

new direction of research may be to investigate blocking coalitions, in which the assignments
of a series of students are permuted in order to give benefit to some students and lecturers
without harming others. An example of a blocking coalition may be seen in Figure 7.1. In
this instance of SPA-ST, stable matching M = {(s1, p2), (s2, p3), (s3, p1)} is shown in bold,
and C = {s2, s3} is a blocking coalition. Permuting the assignments of students s2 and s3 in
C results in the stable matching M ′ = {(s1, p2), (s2, p1), (s3, p3)}, underlined in Figure 7.1,
in which one student and one lecturer improve their rank in M ′ compared to M and no stu-
dent or lecturer worsens their rank. It is possible to find a stable and coalition-free matching
in polynomial time by first finding a stable matching and then finding and satisfying blocking
coalitions repeatedly [12]. It would be interesting to determine whether there exists a faster
direct polynomial-time algorithm to find a stable and coalition-free matching in this setting.

Finally, in the second half of Chapter 6, we investigated lecturer load balancing in a new
area, namely SPA-STL. We defined new notions of what it means to have a load-balanced
matching and presented polynomial-time algorithms to find such matchings. Similar to the
definitions of fairness in Chapter 3, we may wish to define new measures associated with
lecturer load balancing such as the square of differences between a lecturer’s target and their

190

number of allocations, and determine whether matchings that minimise such measures can
be found in polynomial time. We additionally showed that in the presence of stability, load-
balanced matchings are NP-hard to find and presented new IP models for these problems.
As mentioned in Section 6.4, it remains open to develop approximation algorithms, or prove
inapproximability results for finding load-balanced stable matchings in either SPA-STL or
HRTH.

BIBLIOGRAPHY 191

Bibliography

[1] A. Abdulkadiroǧlu and T. Sönmez. Random serial dictatorship and the core from ran-
dom endowments in house allocation problems. Econometrica, 66(3):689–701, 1998.

[2] A. Abdulkadiroǧlu, P.A. Pathak, A.E. Roth, and T. Sönmez. The Boston public school
match. American Economic Review, 95(2):368–371, 2005.

[3] D.J. Abraham, R.W. Irving, and D.F. Manlove. The Student-Project Allocation Prob-
lem. In Proceedings of ISAAC ’03: the 14th Annual International Symposium on Al-

gorithms and Computation, volume 2906 of Lecture Notes in Computer Science, pages
474–484. Springer, 2003.

[4] D.J. Abraham, K. Cechlárová, D.F. Manlove, and K. Mehlhorn. Pareto optimality in
house allocation problems. In Proceedings of ISAAC ’04: the 15th Annual Interna-

tional Symposium on Algorithms and Computation, volume 3341 of Lecture Notes in

Computer Science, pages 3–15. Springer, 2004.

[5] D.J. Abraham, R.W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. In
Proceedings of SODA ’05: the 16th ACM-SIAM Symposium on Discrete Algorithms,
pages 424–432. ACM-SIAM, 2005.

[6] D.J. Abraham, R.W. Irving, and D.F. Manlove. Two algorithms for the Student-Project
allocation problem. Journal of Discrete Algorithms, 5(1):79–91, 2007. Preliminary
version appeared as [3].

[7] V. Bansal, A. Agrawal, and V.S. Malhotra. Polynomial time algorithm for an optimal
stable assignment with multiple partners. Theoretical Computer Science, 379(3):317–
328, 2007.

[8] G. Brassard and P. Bratley. Fundamentals of Algorithmics. Prentice-Hall, 1996.

[9] C.T. Cheng. The generalized median stable matchings: Finding them is not that easy.
In Proceedings of LATIN ’08: the 8th Latin-American Theoretical INformatics sympo-

sium, volume 4957 of Lecture Notes in Computer Science, pages 568–579. Springer,
2008.

Bibliography 192

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.
McGraw-Hill/MIT, 3rd edition, 2009.

[11] Y.A. Dinic. Algorithm for solution of a problem of maximum flow in networks with
power estimation. Soviet Math. Dokl., 11(5):1277–1280, 1970.

[12] A. Erdil and H. Erkin. What’s the matter with tie-breaking? Improving efficiency in
school choice. American Economic Review, 98:669–689, 2008.

[13] T. Feder. A new fixed point approach for stable networks and stable marriages. In
Proceedings of STOC ’89: the 21st ACM Symposium on Theory of Computing, pages
513–522. ACM, 1989.

[14] T. Feder. Stable Networks and Product Graphs. PhD thesis, Stanford University, 1990.
Published in Memoirs of the American Mathematical Society, vol. 116, no. 555, 1995.

[15] T. Feder. A new fixed point approach for stable networks and stable marriages. Journal

of Computer and System Sciences, 45:233–284, 1992. Preliminary version appeared as
[13].

[16] T. Feder. Network flow and 2-satisfiability. Algorithmica, 11(3):291–319, 1994.

[17] L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canadian Journal of

Mathematics, 8:399–404, 1956.

[18] H.N. Gabow and R.E. Tarjan. Faster scaling algorithms for network problems. SIAM

Journal on Computing, 18:1013–1036, 1989.

[19] D. Gale and L.S. Shapley. College admissions and the stability of marriage. American

Mathematical Monthly, 69:9–15, 1962.

[20] D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete

Applied Mathematics, 11:223–232, 1985.

[21] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1:237–267, 1976.

[22] S. Gupta, S. Roy, S. Saurabh, and M. Zehavi. Balanced stable marriage: How close is
close enough? In Proceedings of WADS ’19: the 16th Algorithms and Data Structures

Symposium, Lecture Notes in Computer Science, pages 423–437. Springer, 2019.

[23] D. Gusfield. Three fast algorithms for four problems in stable marriage. SIAM Journal

on Computing, 16(1):111–128, 1987.

Bibliography 193

[24] D. Gusfield. The structure of the stable roommate problem – efficient representation
and enumeration of all stable assignments. SIAM Journal on Computing, 17(4):742–
769, 1988.

[25] D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algorithms.
MIT Press, 1989.

[26] C.-C. Huang, T. Kavitha, K. Mehlhorn, and D. Michail. Fair matchings and related
problems. Algorithmica, 74:1184–1203, 2016.

[27] A. Hylland and R. Zeckhauser. The efficient allocation of individuals to positions.
Journal of Political Economy, 87(2):293–314, 1979.

[28] IBM. CPLEX optimizer. https://www.ibm.com/analytics/

cplex-optimizer, 2019.

[29] R.W. Irving. An efficient algorithm for the “stable roommates” problem. Journal of

Algorithms, 6:577–595, 1985.

[30] R.W. Irving and P. Leather. The complexity of counting stable marriages. SIAM Journal

on Computing, 15(3):655–667, 1986.

[31] R.W. Irving and D.F. Manlove. The Stable Roommates Problem with Ties. Journal of

Algorithms, 43:85–105, 2002.

[32] R.W. Irving, P. Leather, and D. Gusfield. An efficient algorithm for the “optimal” stable
marriage. Journal of the ACM, 34(3):532–543, 1987.

[33] R.W. Irving, D.F. Manlove, and S. Scott. The Hospitals/Residents problem with Ties.
In Proceedings of SWAT ’00: the 7th Scandinavian Workshop on Algorithm Theory,
volume 1851 of Lecture Notes in Computer Science, pages 259–271. Springer, 2000.

[34] K. Iwama, S. Miyazaki, and H. Yanagisawa. Approximation algorithms for the sex-
equal stable marriage problem. In Proceedings of WADS ’07: the 10th International

Workshop on Algorithms and Data Structures, volume 4619 of Lecture Notes in Com-

puter Science, pages 201–213. Springer, 2007.

[35] K. Iwama, S. Miyazaki, and H. Yanagisawa. Approximation algorithms for the sex-
equal stable marriage problem. ACM Transactions on Algorithms, 7(1), 2010. Article
number 2. Preliminary version appeared as [34].

[36] K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for the
student-project allocation problem with preferences over projects. In Proceedings of

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer

Bibliography 194

TAMC ’11: the 8th Annual Conference on Theory and Applications of Models of Com-

putation, volume 6648 of Lecture Notes in Computer Science, pages 440–451. Springer,
2011.

[37] K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for the
student-project allocation problem with preferences over projects. Journal of Discrete

Algorithms, 13:59–66, 2012. Preliminary version appeared as [36].

[38] A. Kato. Complexity of the sex-equal stable marriage problem. Japan Journal of

Industrial and Applied Mathematics, 10:1–19, 1993.

[39] T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Strongly stable matchings in time
O(nm) and extension to the Hospitals-Residents problem. In Proceedings of STACS

’04: the 21st International Symposium on Theoretical Aspects of Computer Science,
volume 2996 of Lecture Notes in Computer Science, pages 222–233. Springer, 2004.

[40] Z. Király. Linear time local approximation algorithm for maximum stable marriage. In
Proceedings of MATCH-UP ’12: the 2nd International Workshop on Matching Under

Preferences, pages 99–110, 2012.

[41] D.E. Knuth. Stable Marriage and its Relation to Other Combinatorial Problems,
volume 10 of CRM Proceedings and Lecture Notes. American Mathematical Soci-
ety, 1997. English translation of Mariages Stables, Les Presses de L’Université de
Montréal, 1976.

[42] A. Kunysz. The strongly stable Roommates problem. In Proceedings of ESA ’16:

the 24th Annual European Symposium on Algorithms, number 60 in Leibniz Interna-
tional Proceedings in Informatics, pages 1–15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016.

[43] B. Lazarov. Matching Algorithm Toolkit web application. https://matwa.

optimalmatching.com, 2019. [Online; accessed 25 May 2020].

[44] C. Lennon and B. Pittel. On the likely number of solutions for the Stable Marriage
problem. Combinatorics, Probability and Computing, 18:371–421, 2009.

[45] D. Maier and J.A. Storer. A note on the complexity of the superstring problem. Tech-
nical Report 233, Dept. Electrical Engineering and Computer Science, Princeton Uni-
versity, USA, 1977.

[46] D.F. Manlove. Stable marriage with ties and unacceptable partners. Technical Report
TR-1999-29, University of Glasgow, Department of Computing Science, January 1999.

[47] D.F. Manlove. Algorithmics of Matching Under Preferences. World Scientific, 2013.

https://matwa.optimalmatching.com
https://matwa.optimalmatching.com

Bibliography 195

[48] D.F. Manlove and G. O’Malley. Student project allocation with preferences over
projects. In Proceedings of ACiD ’05: the 1st Algorithms and Complexity in Durham

workshop, volume 4 of Texts in Algorithmics, pages 69–80. KCL Publications, 2005.

[49] D.F. Manlove and C.T.S. Sng. Popular matchings in the Capacitated House Allocation
problem. In Proceedings of ESA ’06: the 14th Annual European Symposium on Algo-

rithms, volume 4168 of Lecture Notes in Computer Science, pages 492–503. Springer,
2006.

[50] D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants
of stable marriage. Technical Report TR-1999-43, University of Glasgow, School of
Computing Science, 1999.

[51] D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of
stable marriage. Theoretical Computer Science, 276(1-2):261–279, 2002. Full version
available as [50].

[52] D.F. Manlove, I. McBride, and J. Trimble. “Almost-stable” matchings in the Hospitals
/ Residents problem with couples. Constraints, 22:50–72, 2017.

[53] E. McDermid. A 3/2 approximation algorithm for general stable marriage. In Proceed-

ings of ICALP ’09: the 36th International Colloquium on Automata, Languages and

Programming, volume 5555 of Lecture Notes in Computer Science, pages 689–700.
Springer, 2009.

[54] E. McDermid and R.W. Irving. Popular matchings: Structure and algorithms. In Pro-

ceedings of COCOON ’09: the 15th Annual International Computing and Combina-

torics Conference, volume 5609 of Lecture Notes in Computer Science, pages 506–515.
Springer, 2009.

[55] E. McDermid and R.W. Irving. Popular matchings: Structure and algorithms. Journal

of Combinatorial Optimization, 22(3):339–358, 2011. Preliminary version appeared as
[54].

[56] E. McDermid and R.W. Irving. Sex-equal stable matchings: Complexity and exact
algorithms. Algorithmica, 68:545–570, 2014.

[57] E.J. McDermid and D.F. Manlove. Keeping partners together: Algorithmic results for
the hospitals / residents problem with couples. Journal of Combinatorial Optimization,
19(3):279–303, 2010.

[58] D.G. McVitie and L.B. Wilson. The stable marriage problem. Communications of the

ACM, 14(7):486–490, 1971.

Bibliography 196

[59] S. Mitchell, M. O’Sullivan, and I. Dunning. PuLP: A linear programming toolkit for
Python. Optimization Online, 2011.

[60] S. Olaosebikan and D.F. Manlove. Super-stability in the Student-Project Allocation
problem with ties. In Proceedings. COCOA ’18: the 12th International Conference

on Combinatorial Optimization and Applications, Lecture Notes in Computer Science,
pages 357–371. Springer, 2018.

[61] S. Olaosebikan and D.F. Manlove. An algorithm for strong stability in the Student-
Project Allocation problem with ties. In Proceedings of CALDAM ’20: the 6th Inter-

national Conference on Algorithms and Discrete Applied Mathematics, Lecture Notes
in Computer Science, pages 384–399. Springer, 2020.

[62] Oracle. Class BigInteger. https://docs.oracle.com/javase/8/docs/

api/java/math/BigInteger.html, 2018. [Java version 8. Online; accessed
07 August 2018].

[63] Oracle. Primitive data types. https://docs.oracle.com/javase/

tutorial/java/nutsandbolts/datatypes.html, 2019. [Java version 8.
Online; accessed 13 April 2020].

[64] J.B. Orlin. Max flows in O(nm) time, or better. In Proceedings of STOC ’13: 45th

annual ACM symposium on Theory of computing, pages 765–774. ACM, 2013.

[65] E. Peranson and R.R. Randlett. The NRMP matching algorithm revisited: Theory
versus practice. Academic Medicine, 70(6):477–484, 1995.

[66] E. Ronn. NP-complete stable matching problems. Journal of Algorithms, 11:285–304,
1990.

[67] A.E. Roth. The evolution of the labor market for medical interns and residents: a case
study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

[68] A.E. Roth. On the allocation of residents to rural hospitals: a general property of two-
sided matching markets. Econometrica, 54:425–427, 1986.

[69] A.E. Roth and M.A.O. Sotomayor. Two-Sided Matching: a Study in Game-Theoretic

Modeling and Analysis, volume 18 of Econometric Society Monographs. Cambridge
University Press, 1990.

[70] A.E. Roth and X. Xing. Jumping the gun: imperfections and institutions related to the
timing of market transactions. American Economic Review, 84(4):992–1044, 1994.

https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Bibliography 197

[71] D.D. Sleator and R.E. Tarjan. A data structure for dynamic trees. Journal of Computer

and System Sciences, 26(3):362–391, 1983.

[72] O. Tange. GNU parallel - the command-line power tool. The USENIX Magazine, pages
42–47, 2011.

[73] C.-P. Teo and J. Sethuraman. The geometry of fractional stable matchings and its
applications. Mathematics of Operations Research, 23(4):874–891, 1998.

[74] H. Yanagisawa. Approximation Algorithms for Stable Marriage Problems. PhD thesis,
Kyoto University, School of Informatics, 2007.

[75] Y. Zhang. The determinants of national college entrance exam performance in China -

with an analysis of private tutoring. PhD thesis, Columbia University, 2011.

[76] L. Zhou. On a conjecture by Gale about one-sided matching problems. Journal of

Economic Theory, 52(1):123–135, 1990.

198

Appendix A

Degree-based stable matchings in
SMI – supplementary material

A.1 Experimental work supplement

This section contains tables of results for experiments conducted on instances of SMI that are
referred to in Section 3.7.

Case DIav DImed DI5 DI95 SPav SPmed SP5 SP95 ENav ENmed EN5 EN95

S10 204.9 206.0 180.0 226.0 204.6 205.0 177.0 228.0 244.8 244.0 215.9 270.0
S20 214.3 215.0 191.0 236.0 217.6 218.0 187.0 245.0 256.1 257.0 227.9 283.0
S30 220.7 221.5 195.0 243.0 234.7 234.0 205.0 264.0 264.0 265.5 236.0 288.0
S40 234.1 235.0 208.0 255.0 259.8 257.0 218.0 307.0 279.9 281.0 248.0 305.0
S50 237.1 238.0 213.0 259.0 288.4 282.0 233.0 365.1 288.7 289.0 260.0 317.0
S60 252.5 253.5 229.0 276.0 335.5 321.5 249.9 460.4 311.3 312.0 281.0 340.0
S70 261.3 262.0 234.0 284.0 378.5 353.0 264.9 559.1 320.5 321.0 285.0 353.0
S80 269.7 270.0 246.0 294.0 460.4 417.5 284.0 782.3 334.5 334.0 296.9 373.0
S90 288.4 290.0 262.0 312.0 548.5 491.0 303.9 1006.1 360.9 360.0 325.0 400.0

S100 290.7 291.0 259.9 321.0 654.7 539.0 317.0 1341.3 369.3 369.5 329.0 412.0
S200 362.4 354.0 315.0 441.0 4272.8 3505.5 481.8 11161.4 533.5 514.0 420.9 695.3
S300 447.1 440.0 425.0 494.0 18866.5 13587.5 728.7 56383.6 789.1 751.0 606.9 1047.1
S400 541.3 540.0 520.0 562.0 54243.1 39662.5 4283.5 171349.4 1278.7 1127.0 891.9 2136.6
S500 697.6 698.0 662.9 734.0 159924.0 112320.5 7650.9 491541.9 1961.7 1761.5 1201.4 3156.3
S600 965.6 968.0 925.9 1010.0 369995.5 253337.0 19624.1 1043107.8 2835.6 2546.0 1767.9 4707.9
S700 1154.3 1160.0 1080.0 1219.0 745791.4 518138.0 11246.6 2256581.1 3986.8 3194.5 2218.7 7620.5
S800 1396.7 1402.0 1312.0 1485.0 1302405.0 956639.0 76865.6 3600000.0 5708.3 4496.5 2801.7 12450.0
S900 1701.9 1712.0 1585.9 1836.0 1868537.4 1781841.0 118124.7 3600000.0 9043.3 5958.0 3439.9 20366.2

S1000 2087.9 2112.0 1855.0 2293.0 2220264.5 2449492.0 152354.6 3600000.0 11802.0 8092.5 4234.8 28824.8

Table A.1: A comparison of time taken to execute Algorithm REDI, Algorithm RESP and Algorithm ENUM. We abbreviate the algorithms as
follows: Algorithm REDI (DI), Algorithm RESP (SP) and Algorithm ENUM (EN). Here DIav, DImed, DI5 and DI95 represent the mean,
median, 5th percentile and 95th percentile of the time taken to execute Algorithm REDI for a given instance type. Similar notation is used for
Algorithms RESP and ENUM. Times are in ms.

A.1. Experimental work supplement 200

Case Balanced Sex-equal
Egalitar-

ian
Minimum

regret
Regret-

equal
Min-regret

sum
Algorithm

REDI
Algorithm

RESP
S10 32.1 32.1 33.3 32.8 32.8 35.6 33.4 33.4
S20 90.5 90.9 95.1 94.2 94.0 104.5 96.9 96.7
S30 165.6 166.2 177.5 174.9 176.5 199.4 181.5 181.4
S40 254.9 255.8 273.0 270.7 270.2 312.7 278.4 278.2
S50 357.2 358.3 382.0 378.9 379.5 439.8 393.0 393.3
S60 466.4 467.7 495.5 495.5 496.5 573.3 516.2 515.6
S70 588.8 590.8 626.5 626.2 629.1 739.3 651.4 651.4
S80 720.1 722.3 769.7 764.9 769.9 901.8 798.9 797.8
S90 861.1 863.3 921.7 906.6 914.9 1054.9 952.7 951.4

S100 1004.7 1007.2 1073.4 1062.7 1063.1 1245.0 1103.2 1103.3
S200 2844.8 2849.2 3000.2 3014.6 3008.9 3553.4 3134.9 3131.4
S300 5224.1 5230.1 5510.4 5488.6 5550.5 6348.2 5741.3 5736.6
S400 8036.5 8045.4 8471.1 8503.0 8541.4 9743.7 8835.2 8837.8
S500 11215.7 11223.6 11740.4 11891.9 11857.3 13577.3 12352.0 12352.5
S600 14757.4 14770.0 15423.7 15474.0 15543.2 18188.9 16061.1 16070.5
S700 18576.7 18590.2 19407.7 19525.4 19553.7 22512.5 20217.5 20193.7
S800 22718.1 22731.4 23707.2 23851.3 23975.3 27652.9 24824.3 24766.9
S900 27098.2 27113.3 28198.3 28678.0 28667.4 32719.2 29707.8 29625.7

S1000 31684.8 31702.0 32976.9 33364.7 33393.2 38599.1 34551.0 34468.1

Table A.2: Mean balanced score for six different optimal stable matchings and outputs
from Algorithms REDI and RESP.

Case Balanced Sex-equal
Egalitar-

ian
Minimum

regret
Regret-

equal
Min-regret

sum
Algorithm

REDI
Algorithm

RESP
S10 5.4 5.3 8.9 7.0 6.5 12.2 7.6 7.6
S20 10.5 10.0 22.7 17.8 16.7 36.2 21.6 21.4
S30 13.9 13.1 43.7 32.1 32.6 75.8 41.2 41.3
S40 17.4 16.1 63.2 48.8 44.0 121.8 58.7 58.5
S50 22.6 21.5 84.3 65.1 63.2 169.8 87.3 87.8
S60 25.2 23.1 98.8 80.7 77.8 213.6 113.1 112.4
S70 27.9 25.5 121.4 99.8 98.8 290.9 139.2 139.4
S80 29.8 27.6 149.6 118.0 118.5 347.5 170.1 168.8
S90 36.8 33.5 182.8 125.6 134.0 378.8 201.5 199.9

S100 36.0 32.6 200.8 150.1 141.1 456.9 213.7 214.6
S200 71.9 66.4 440.8 399.6 369.1 1306.0 598.0 593.3
S300 101.9 92.1 762.3 616.6 709.7 2067.9 1060.2 1053.4
S400 135.3 126.2 1117.8 1017.1 1061.0 3131.9 1595.2 1600.6
S500 154.8 142.5 1345.4 1431.4 1343.2 4322.4 2255.0 2256.4
S600 188.3 173.4 1694.3 1562.5 1641.7 6111.8 2596.3 2611.7
S700 223.3 207.4 2071.3 2014.9 2053.9 7077.1 3268.0 3223.0
S800 233.0 215.2 2437.2 2388.6 2597.4 8836.2 4164.2 4072.5
S900 256.0 240.1 2705.8 3227.4 3179.2 10125.8 5077.3 4948.9

S1000 284.0 265.0 3147.4 3438.4 3454.8 12400.0 5583.6 5421.9

Table A.3: Mean sex-equal score for six different optimal stable matchings and outputs
from Algorithms REDI and RESP.

A.1. Experimental work supplement 201

Case Balanced Sex-equal
Egalitar-

ian
Minimum

regret
Regret-

equal
Min-regret

sum
Algorithm

REDI
Algorithm

RESP
S10 58.6 59.0 57.7 58.3 58.8 58.9 59.1 59.2
S20 170.3 171.7 167.4 169.5 170.7 172.2 172.2 172.1
S30 316.9 319.4 311.3 315.5 319.3 322.5 321.8 321.6
S40 492.1 495.5 482.7 488.7 493.6 502.4 498.0 497.8
S50 691.5 695.0 679.7 687.9 692.6 708.1 698.8 698.7
S60 907.2 912.3 892.1 903.2 909.7 930.1 919.4 918.8
S70 1149.3 1156.1 1131.7 1145.4 1154.5 1185.7 1163.7 1163.4
S80 1410.2 1417.1 1389.8 1403.3 1415.2 1452.9 1427.7 1426.9
S90 1684.8 1693.2 1660.6 1675.1 1687.7 1727.1 1703.8 1702.9

S100 1973.3 1981.8 1945.9 1963.4 1976.0 2028.7 1992.6 1991.9
S200 5617.4 5632.0 5559.5 5601.3 5625.2 5790.9 5671.9 5669.5
S300 10346.3 10368.1 10258.5 10314.5 10358.0 10611.2 10422.3 10419.9
S400 15937.5 15964.5 15824.3 15932.0 15978.1 16332.6 16075.3 16075.0
S500 22276.4 22304.7 22135.5 22276.0 22308.6 22800.7 22449.0 22448.6
S600 29326.0 29366.7 29153.0 29297.7 29371.4 30233.8 29525.9 29529.3
S700 36929.9 36972.9 36744.2 36933.6 36975.4 37910.1 37167.1 37164.3
S800 45203.0 45247.6 44977.2 45195.9 45264.7 46423.0 45484.3 45461.3
S900 53940.0 53986.4 53690.7 54003.9 54053.3 55265.3 54338.2 54302.4

S1000 63085.6 63139.0 62806.5 63145.7 63204.4 64752.1 63518.5 63514.3

Table A.4: Mean cost for six different optimal stable matchings and outputs from Algo-
rithms REDI and RESP.

Case Balanced Sex-equal
Egalitar-

ian
Minimum

regret
Regret-

equal
Min-regret

sum
Algorithm

REDI
Algorithm

RESP
S10 7.9 7.9 7.8 7.6 7.7 7.8 7.7 7.7
S20 14.4 14.5 14.3 13.5 13.8 14.1 13.8 13.8
S30 21.0 21.4 20.7 19.3 19.8 20.2 19.9 19.8
S40 26.7 27.1 26.1 24.3 25.1 25.7 25.2 25.1
S50 31.7 32.0 31.2 28.7 29.5 30.4 29.6 29.5
S60 36.6 37.0 35.5 33.1 34.1 35.1 34.2 34.1
S70 41.2 41.9 40.6 37.4 38.5 39.8 38.6 38.5
S80 45.1 45.6 44.6 41.1 42.4 44.0 42.5 42.4
S90 49.1 49.7 48.2 44.6 45.9 47.2 46.1 45.9

S100 53.4 54.1 52.0 48.1 49.7 51.2 49.9 49.8
S200 87.5 88.0 85.2 79.3 82.0 84.8 82.2 82.0
S300 116.5 117.5 114.0 104.3 107.3 110.8 107.3 107.3
S400 139.2 139.6 136.8 125.5 129.1 133.4 129.3 129.1
S500 160.9 161.2 159.8 146.7 151.1 154.4 151.1 151.1
S600 182.1 182.6 178.7 166.0 170.8 177.0 170.9 170.7
S700 198.5 198.9 197.4 181.8 186.8 191.9 186.8 186.7
S800 217.7 218.6 214.3 197.9 202.2 210.7 202.5 199.8
S900 239.6 239.4 235.7 215.6 222.4 228.7 222.5 216.0

S1000 252.7 253.7 252.2 232.5 239.5 246.3 239.5 232.8

Table A.5: Mean degree for six different optimal stable matchings and outputs from
Algorithms REDI and RESP.

A.1. Experimental work supplement 202

Case Balanced Sex-equal
Egalitar-

ian
Minimum

regret
Regret-

equal
Min-regret

sum
Algorithm

REDI
Algorithm

RESP
S10 1.8 1.8 2.2 1.6 1.5 2.7 1.5 1.5
S20 3.2 3.3 4.1 2.6 2.2 5.2 2.2 2.2
S30 5.1 5.2 6.3 3.5 2.9 8.2 2.9 2.9
S40 6.2 6.3 7.5 4.3 3.2 10.6 3.2 3.2
S50 7.2 7.2 8.5 4.7 3.6 12.3 3.6 3.6
S60 8.2 8.4 9.4 5.5 4.0 14.1 4.0 4.0
S70 9.2 9.5 11.0 6.1 4.0 16.5 4.0 4.0
S80 9.5 9.6 11.9 6.4 4.3 18.1 4.3 4.3
S90 10.1 10.4 12.0 6.0 4.2 18.1 4.2 4.2

S100 11.1 11.2 13.1 7.1 4.7 20.1 4.7 4.7
S200 16.5 16.9 18.4 10.7 6.9 33.4 6.9 6.9
S300 23.7 24.0 25.7 13.3 8.7 39.6 8.7 8.7
S400 25.4 25.7 28.3 14.9 9.0 46.0 9.0 9.0
S500 28.0 27.9 30.8 17.9 10.8 52.3 10.8 10.8
S600 31.0 30.9 34.5 18.6 11.3 63.7 11.3 11.1
S700 32.2 32.3 36.1 20.4 12.2 63.2 12.2 12.0
S800 37.0 37.2 39.0 21.1 13.9 71.3 13.9 11.0
S900 42.7 41.8 45.5 24.7 14.3 77.0 14.3 8.1

S1000 40.4 40.1 45.9 25.9 14.2 84.6 14.2 6.8

Table A.6: Mean regret-equality score for six different optimal stable matchings and
output from Algorithms REDI and RESP.

Case Balanced Sex-equal
Egalitar-

ian
Minimum

regret
Regret-

equal
Min-regret

sum
Algorithm

REDI
Algorithm

RESP
S10 13.8 14.0 13.3 13.1 13.9 12.9 13.9 13.9
S20 25.5 25.8 24.5 23.6 25.3 22.9 25.5 25.4
S30 36.9 37.6 35.0 33.4 36.8 32.3 36.9 36.8
S40 47.2 47.8 44.6 42.3 47.0 40.8 47.1 47.0
S50 56.3 56.7 53.7 50.2 55.3 48.4 55.5 55.4
S60 64.9 65.6 61.5 57.9 64.2 56.0 64.4 64.2
S70 73.3 74.3 70.1 65.6 73.0 63.1 73.1 73.1
S80 80.7 81.6 77.0 72.5 80.4 69.8 80.8 80.4
S90 88.1 89.0 84.3 79.2 87.6 76.3 87.9 87.6

S100 95.7 96.9 90.8 85.4 94.8 82.3 95.1 94.9
S200 158.4 159.2 151.7 142.1 157.0 136.3 157.4 157.1
S300 209.4 210.9 202.2 187.6 205.8 182.0 206.0 205.9
S400 252.9 253.4 245.3 227.6 249.2 220.7 249.6 249.2
S500 293.8 294.5 288.8 265.2 291.4 256.5 291.5 291.4
S600 333.1 334.2 322.8 300.9 330.3 290.3 330.5 330.2
S700 364.8 365.6 358.8 330.0 361.3 320.6 361.4 361.4
S800 398.3 400.0 389.6 363.3 390.5 350.0 391.1 388.6
S900 436.5 436.9 426.0 391.4 430.5 380.3 430.8 424.0

S1000 465.0 467.3 458.5 420.9 464.7 408.0 464.9 458.7

Table A.7: Mean regret sum for six different optimal stable matchings and outputs from
Algorithms REDI and RESP.

A.1. Experimental work supplement 203

Case Balanced Sex-equal Egalitarian
Minimum

regret
Regret-

equal
Min-regret

sum
S10 1.1 1.0 1.1 1.6 1.3 1.4
S20 1.0 1.0 1.1 2.1 1.7 1.7
S30 1.0 1.0 1.1 2.7 1.9 1.8
S40 1.0 1.0 1.1 3.3 2.3 2.1
S50 1.0 1.0 1.1 3.9 2.7 2.4
S60 1.0 1.0 1.1 4.7 3.3 3.0
S70 1.0 1.0 1.0 4.9 3.3 2.8
S80 1.0 1.0 1.1 5.4 3.5 3.3
S90 1.0 1.0 1.0 6.3 4.3 3.3

S100 1.0 1.0 1.1 7.1 4.4 3.7
S200 1.0 1.0 1.0 11.2 7.1 6.3
S300 1.0 1.0 1.0 16.3 9.7 8.8
S400 1.0 1.0 1.0 18.1 11.9 10.3
S500 1.0 1.0 1.0 23.7 15.8 13.1
S600 1.0 1.0 1.0 30.0 17.5 15.2
S700 1.0 1.0 1.0 33.2 20.3 19.0
S800 1.0 1.0 1.0 35.1 21.2 16.4
S900 1.0 1.0 1.0 48.6 28.2 21.2

S1000 1.0 1.0 1.0 47.7 24.5 20.2

Table A.8: Mean number of optimal stable matchings per instance.

Case 0 1 2 3 4 5 6
S10 0.7 0.4 0.5 0.4 0.3 0.3 0.4
S20 3.2 1.1 1.0 0.6 0.3 0.2 0.2
S30 5.9 1.7 1.4 0.6 0.4 0.2 0.1
S40 10.6 2.3 1.8 0.8 0.4 0.2 0.1
S50 14.7 2.8 2.1 0.9 0.4 0.2 0.0
S60 20.0 3.6 2.6 1.0 0.3 0.1 0.0
S70 25.0 4.1 2.7 0.9 0.3 0.1 0.0
S80 32.0 4.2 3.3 0.9 0.3 0.1 0.0
S90 37.9 5.1 3.6 0.9 0.3 0.1 0.0

S100 43.8 5.8 3.5 1.2 0.3 0.1 0.0
S200 121.5 9.9 6.0 1.4 0.3 0.1 0.0
S300 194.4 14.1 8.4 1.8 0.3 0.1 0.0
S400 319.5 17.3 9.2 2.2 0.2 0.1 0.0
S500 404.3 23.5 12.5 2.0 0.2 0.0 0.0
S600 501.3 26.4 16.3 1.8 0.3 0.0 0.0
S700 620.7 29.1 16.0 4.4 0.2 0.0 0.0
S800 765.0 28.8 17.7 3.4 0.3 0.0 0.0
S900 905.8 44.5 23.8 2.7 0.2 0.0 0.0

S1000 1008.5 45.8 20.3 2.8 0.2 0.0 0.0

Table A.9: Mean number of stable matchings that satisfy c optimality criteria, where c
varies on the x-axis.

204

Appendix B

Profile-based stable matchings in SMI

– supplementary material

B.1 Experimental work supplement

This section contains tables of results for the experiments conducted in Section 4.7.

B.1. Experimental work supplement 205

Cost Sex-equal score
Case Min Max Mean Min Max Mean
S10 40 78 58.0 0 41 5.2
S20 113 215 167.2 0 71 9.9
S30 243 371 311.2 0 137 13.6
S40 396 572 484.3 0 130 16.1
S50 567 821 679.5 0 218 19.8
S60 730 1057 896.2 0 310 23.3
S70 955 1299 1133.2 0 255 24.2
S80 1164 1609 1390.0 0 217 27.2
S90 1447 1909 1660.9 0 178 31.6

S100 1663 2179 1947.0 0 314 33.2
S200 4865 6257 5554.9 0 411 62.0
S300 9444 11301 10250.0 0 528 93.4
S400 14755 16999 15847.1 0 885 116.3
S500 20610 23767 22137.6 0 1158 136.3
S600 27502 31147 29147.8 0 1311 170.8
S700 35117 38975 36772.6 0 1352 206.2
S800 42372 47962 44930.2 0 1809 230.0
S900 50650 56289 53658.2 0 1812 251.3

S1000 59776 65571 62875.9 0 2295 269.4

Table B.1: Optimal costs and sex-equal scores.

f l10 Degree Cost Sex-equal score
Case Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean
S10 0 13 6.9 0.0 3.0 0.4 4 10 8.6 40 87 60.4 0 63 16.5
S20 2 19 10.6 0.0 4.0 0.4 9 20 17.0 124 275 182.3 0 205 64.8
S30 6 22 13.5 0.0 4.0 0.5 12 30 25.3 247 496 349.3 0 374 142.4
S40 6 26 16.0 0.0 4.0 0.6 18 40 34.0 407 810 564.2 1 650 265.6
S50 7 32 18.2 0.0 6.0 0.6 22 50 42.4 604 1150 809.7 1 902 405.0
S60 11 35 20.4 0.0 4.0 0.6 25 60 51.4 742 1617 1095.5 13 1332 596.8
S70 11 36 22.6 0.0 7.0 0.6 29 70 60.2 1040 2054 1421.3 2 1730 818.4
S80 11 42 24.6 0.0 4.0 0.7 34 80 68.9 1328 2586 1780.0 3 2106 1067.6
S90 14 43 26.6 0.0 5.0 0.7 41 90 78.4 1501 3156 2186.0 7 2644 1363.4

S100 13 45 28.7 0.0 5.0 0.7 40 100 87.2 1807 3609 2617.4 32 2983 1693.5
S200 24 73 45.8 0.0 7.0 0.9 98 200 177.6 5617 12532 8616.7 1277 11096 6494.2
S300 33 96 61.6 0.0 6.0 1.0 110 300 269.4 10333 24028 17608.0 1677 21562 14213.9
S400 46 110 76.5 0.0 8.0 1.1 230 400 361.3 19149 39409 29521.9 10331 35863 24778.8
S500 55 132 90.4 0.0 7.0 1.1 271 500 454.4 26729 60640 43725.3 15185 56490 37529.6
S600 67 155 105.3 0.0 9.0 1.2 365 600 546.5 41102 81496 61248.3 28874 76436 53676.6
S700 65 162 118.5 0.0 9.0 1.3 396 700 641.9 52098 108000 80778.1 37230 101646 71714.5
S800 77 178 131.4 0.0 8.0 1.3 402 800 732.9 60915 134559 102579.6 40623 126963 91993.6
S900 94 198 144.5 0.0 8.0 1.3 491 900 824.0 86785 183870 127944.3 69419 175936 115909.3

S1000 104 208 158.4 0.0 8.0 1.4 652 1000 921.2 104836 205341 154730.8 83732 195439 141113.6

Table B.2: Results for rank-maximal stable matchings over various measures.

f l50 Degree Cost Sex-equal score
Case Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean
S10 0 12 6.0 0.0 6.0 2.4 4 10 7.6 40 81 58.8 0 41 8.3
S20 2 17 8.8 0.0 7.0 2.4 8 20 13.8 113 225 170.0 0 93 22.2
S30 3 20 10.9 0.0 7.0 2.2 12 30 19.3 243 396 317.2 0 161 40.7
S40 3 21 12.4 0.0 8.0 1.8 14 40 24.2 397 626 492.8 0 294 60.5
S50 5 28 14.0 0.0 7.0 1.4 18 49 28.7 567 875 691.0 0 398 85.2
S60 6 28 15.2 0.0 7.0 1.2 21 56 33.0 730 1105 910.5 0 470 106.9
S70 6 29 16.8 0.0 6.0 0.9 24 68 37.0 955 1333 1151.6 0 602 140.0
S80 7 28 17.8 0.0 5.0 0.7 24 76 40.6 1164 1683 1411.4 0 670 163.2
S90 9 32 18.9 0.0 7.0 0.5 26 75 44.4 1455 1981 1683.9 0 825 186.4

S100 8 34 20.0 0.0 5.0 0.4 30 74 47.8 1704 2276 1974.6 1 951 219.4
S200 13 55 28.2 0.0 2.0 0.0 51 119 78.5 4865 6375 5622.4 1 2428 566.6
S300 19 55 34.7 0.0 1.0 0.0 70 165 104.3 9460 12079 10366.3 2 6095 1015.7
S400 22 62 40.0 0.0 1.0 0.0 86 203 126.3 14802 17981 16005.4 0 7130 1503.9
S500 24 76 44.8 0.0 0.0 0.0 107 223 147.7 20625 24592 22358.6 2 9214 2056.5
S600 30 71 49.4 0.0 0.0 0.0 124 292 165.9 27514 32564 29406.9 2 11850 2603.3
S700 33 80 52.7 0.0 0.0 0.0 135 264 183.7 35117 39710 37086.4 2 14023 3201.3
S800 35 83 57.3 0.0 0.0 0.0 145 291 200.3 42579 49508 45308.3 0 19508 3883.3
S900 30 81 59.5 0.0 0.0 0.0 160 305 216.4 50957 59447 54104.8 2 22087 4693.8

S1000 40 89 63.5 0.0 0.0 0.0 176 350 230.6 60181 69426 63364.8 2 26076 5163.1

Table B.3: Results for generous stable matchings over various measures.

f l20 Degree Cost Sex-equal score
Case Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean
S10 0 12 6.1 0.0 3.0 0.5 4 10 8.2 40 79 59.9 0 41 9.5
S20 2 18 8.9 0.0 4.0 0.4 8 20 15.3 113 224 173.7 0 121 27.3
S30 4 20 11.0 0.0 5.0 0.3 12 30 22.0 243 416 323.9 0 228 50.8
S40 3 22 12.6 0.0 3.0 0.3 17 40 28.2 402 693 504.4 0 403 83.8
S50 5 25 14.2 0.0 5.0 0.2 19 50 33.9 570 924 709.6 0 537 123.9
S60 6 30 15.6 0.0 3.0 0.2 23 60 39.8 756 1232 938.0 0 736 173.1
S70 8 30 17.0 0.0 2.0 0.2 25 70 45.0 970 1487 1186.7 0 973 222.8
S80 7 30 18.2 0.0 2.0 0.1 28 80 50.0 1164 1858 1457.6 0 1171 280.2
S90 9 32 19.5 0.0 4.0 0.1 31 90 55.4 1447 2484 1744.8 1 1850 355.7

S100 7 34 20.5 0.0 2.0 0.1 34 100 60.5 1663 2604 2045.8 1 1553 415.6
S200 14 52 29.5 0.0 2.0 0.1 57 199 105.2 5006 8226 5917.3 1 6108 1477.0
S300 21 69 36.8 0.0 3.0 0.0 79 294 144.4 9541 17224 11046.9 4 13374 3115.2
S400 21 72 42.8 0.0 3.0 0.0 99 393 178.1 14934 26115 17149.7 17 20951 5052.7
S500 25 99 48.3 0.0 9.0 0.0 110 496 212.0 20725 48487 24257.5 15 43025 7752.5
S600 31 102 53.5 0.0 4.0 0.0 127 595 244.3 28028 58399 32052.6 14 50581 10459.2
S700 32 113 58.0 0.0 2.0 0.0 141 665 276.7 35634 71039 40774.9 34 60999 13863.8
S800 37 129 63.0 0.0 3.0 0.0 162 797 304.0 42713 105477 50215.3 10 95243 18093.7
S900 36 136 66.0 0.0 2.0 0.0 174 833 331.2 51568 117599 60037.6 46 104663 21334.7

S1000 44 163 71.5 0.0 3.0 0.0 191 975 362.5 60270 155476 71456.3 11 142570 27270.2

Table B.4: Results for median stable matchings over various measures.

B
.1.

E
xperim

entalw
ork

supplem
ent

209

Exponential weight Vector-based weight
Case NI Mean Median 5th 95th Mean Median 5th 95th
S10 821 124.9 116.0 43.0 249.0 243.1 228.0 126.0 424.0
S20 970 447.4 420.0 99.0 870.6 573.2 548.0 204.0 1028.0
S30 992 1039.3 1007.0 303.3 1853.3 964.1 952.0 380.0 1589.8
S40 999 1945.7 1905.0 641.0 3294.2 1582.7 1580.0 634.8 2514.4
S50 1000 3107.8 3071.5 1241.8 4959.9 2145.9 2138.0 1035.4 3248.3
S60 1000 4575.3 4534.0 2021.5 7405.2 2733.3 2708.0 1464.0 4168.1
S70 1000 6578.8 6552.5 3251.9 9954.4 3693.3 3662.0 1978.6 5504.5
S80 1000 8757.7 8792.0 4606.9 13191.3 4588.7 4560.0 2639.4 6512.8
S90 1000 11142.1 11133.0 5852.9 16843.2 5332.8 5336.0 3085.6 7521.6

S100 1000 14017.8 14017.0 7619.8 20304.6 6178.5 6160.0 3824.0 8480.8
S200 1000 59602.8 60321.5 36976.8 80033.2 17044.9 17140.0 12061.4 21662.1
S300 1000 136097.0 137972.5 90976.8 177193.6 31607.3 31892.0 23001.8 39012.4
S400 1000 244864.3 248596.0 173835.2 307019.8 46661.3 46880.0 37165.4 54896.6
S500 1000 378996.3 381381.5 274100.7 472220.2 61405.3 61654.0 49173.8 72612.8
S600 1000 546143.5 549124.5 397475.9 670184.7 84767.9 85786.0 67468.6 99364.5
S700 1000 737304.2 742278.5 565928.8 892021.2 103445.1 103565.0 86707.3 119857.8
S800 999 945159.5 954683.0 704833.1 1149060.4 121385.7 121794.0 101562.0 139396.8
S900 1000 1194184.0 1202831.0 935470.5 1432438.2 141469.8 141310.0 121259.1 160431.9

S1000 999 1472310.9 1488288.0 1126992.0 1749723.5 161565.1 162486.0 136646.2 181580.0
S2000 5 5634355.8 5817101.0 4822710.8 6399964.2 417891.2 414424.0 399376.0 443734.4
S3000 5 11823955.4 11868313.0 11037121.2 12496744.2 738962.0 735218.0 696282.8 776654.0
S4000 5 19613652.4 18888936.0 18401424.6 21468356.2 1029854.0 1029180.0 980168.8 1071605.2
S5000 3 30767743.3 30472468.0 30221465.2 31520714.2 1434044.0 1430948.0 1424421.2 1445834.0

Table B.5: Comparison of the minimum number of bits required to store edge capacities of a network (exponential weight edge capacities) and
vb-network (vector-based weight edge capacities). In this table, 5th and 95th refer to the 5th and 95th percentiles respectively, and NI denotes
the number of instances that did not timeout and had at least one rotation, and were thus used in space requirement calculations.

210

Appendix C

Large stable matchings in SPA-ST –
supplementary material

C.1 Further discussion on Király’s 3
2-approximation

algorithm for SMTI

Let I be an instance of SPA-ST. In Section 5.3 we showed that converting I to an instance
of SMTI and then using Király’s approximation algorithm does not necessarily result in a
matching M in I that is a 3

2
-approximation to a maximum stable matching, even in the case

where M is stable. In this section we give some intuition as to why this is the case, by com-
paring the effect of conversion to an SMTI instance and then use of Király’s approximation
algorithm, when applied to instance I1 from Section 5.3 and when applied to a new instance
I2.

Figure C.1a shows the SPA-ST instance I2 which is the same as the instance in Figure 5.2a but
with the capacities of projects p1 and p2 reduced to 1. Figure C.1c shows I2 converted into
an SMTI instance I ′′2 using the same two-stage process as in Figure 5.2. Finally, Table C.1
shows the algorithm trace for instance I ′′2 using Király’s 3

2
-approximation algorithm for SMTI

[40]. We can see from Figure C.1 that, in contrast to the case for instance I1, this process
yields a stable matching M = {(s1, p3), (s2, p4), (s4, p2)} in I2 that is a 3

2
-approximation

to a maximum stable matching (this must be the case since there are only 4 students in the
instance).

The main first difference in the traces can be seen on line 14 of Table 5.1 and line 11 of
Table C.1. On line 11 of Table C.1, m2 applies to w4 as an advantaged man, giving him the
ability to take w4 from m3. This shows the benefit of having a tie including m2 and m3 at
the beginning of w4’s list - either of these men being assigned to w4 would be equally useful
in a stable matching. Therefore allowing m2 to take w4 from m3 gives m3 a chance to get

C.1. Further discussion on Király’s 3
2
-approximation algorithm for SMTI 211

Students preferences:
s1: p3
s2: p4 p1 p2
s3: p3
s4: (p2 p3) p4 p1

Project details:
p1: lecturer l1, c1 = 1
p2: lecturer l1, c2 = 1
p3: lecturer l2, c3 = 2
p4: lecturer l2, c4 = 1

Lecturer preferences:
l1: s2 s4
l2: s4 (s1 s2 s3)

d1 = 2
d2 = 2

(a) SPA-ST instance I2.
Same as instance I in
Figure 5.2a except that
projects 1 and 2 have an ca-
pacity of 1.

Resident preferences:
r1: h3
r2: h4 h1 h2
r3: h3
r4: (h2 h3) h4 h1
r5: (h3 h4)

Hospital preferences:
h1: r2 r4
h2: r2 r4
h3: r5 r4 (r1 r3)
h4: r5 r4 r2

c′1 = 1
c′2 = 1
c′3 = 2
c′4 = 1

(b) HRT instance I ′2 con-
verted from the SPA-ST in-
stance in Figure C.1a.

Women’s preferences:
w1: (m3 m5)
w2: m4 m1 m2

w3: (m3 m5)
w4: (m2 m3 m5) m4 m1

w5: (m3 m5 m4)

Men’s preferences:
m1: w2 w4

m2: w2 w4

m3: w5 w4 (w1 w3)
m4: w5 w4 w2

m5: w5 w4 (w1 w3)

(c) SMTI instance I ′′2 con-
verted from the HRT in-
stance in Figure C.1b.

Figure C.1: Conversion of an SPA-ST instance to an SMTI instance.

another partner, increasing the size of matching eventually attained. On line 14 of Table 5.1,
m2 becomes ‘stuck’ on w5, one of the women derived from a dummy resident. This stops
m2 being able to ever apply to w4 as an advantaged man and the benefits of having m2 and
m3 tied at the beginning of w4’s preference list are not realised.

C.1. Further discussion on Király’s 3
2
-approximation algorithm for SMTI 212

Action m1 m2 m3 m4 m5

1 m5 applies to w5, accepted w5

2 m4 applies to w5, rejected, m4 removes w5 w5

3 m4 applies to w4, accepted w4 w5

4 m3 applies to w5, rejected, m3 removes w5 w4 w5

5 m3 applies to w4, accepted, m4 removes w4 w4 w5

6 m4 applies to w2, accepted w4 w2 w5

7 m2 applies to w2, rejected, m2 removes w2 w4 w2 w5

8 m2 applies to w4, rejected, m2 removes w4 w4 w2 w5

9 m2 advantaged w4 w2 w5

10 m2 applies to w2, rejected, m2 removes w2 w4 w2 w5

11 m2 applies to w4, accepted, m3 removes w4 w4 w2 w5

12 m3 applies w1, accepted w4 w1 w2 w5

13 m1 applies to w2, rejected, m1 removes w2 w4 w1 w2 w5

14 m1 applies to w4, rejected, m1 removes w4 w4 w1 w2 w5

15 m1 advantaged w4 w1 w2 w5

16 m1 applies to w2, rejected, m1 removes w2 w4 w1 w2 w5

17 m1 applies to w4, rejected, m1 removes w4 w4 w1 w2 w5

18 m1 inactive − w4 w1 w2 w5

Table C.1: Trace of running Király’s SMTI 3
2
-approximation algorithm for instance I ′′2 in

Figure 5.2c. In this table, the phrase “mi removeswj” indicates that manmi removes woman
wj from their preference list.

213

Appendix D

Experiments and further results for
SPA-ST – supplementary material

D.1 Experimental work supplement

In this Section we present tables of results for the experiments conducted in Section 6.2.3.

Approx Minimum Maximum
Case Median 5th 95th Median 5th 95th Median 5th 95th

SIZE1 97.0 93.0 99.0 92.0 89.0 95.0 98.0 95.0 100.0
SIZE2 193.0 188.0 197.0 183.0 179.0 188.0 196.0 191.0 199.0
SIZE3 289.0 283.0 294.0 275.0 269.0 280.0 294.0 288.0 298.0
SIZE4 385.0 379.0 391.0 366.0 360.0 373.0 392.0 386.0 397.0
SIZE5 481.0 474.0 488.0 458.0 450.0 465.0 490.0 483.0 496.0
SIZE6 577.0 570.0 585.0 549.0 541.0 557.0 588.0 580.0 594.0
SIZE7 673.0 665.0 681.0 641.0 632.0 649.0 686.0 678.0 693.0
SIZE8 770.0 761.0 778.0 732.0 723.0 741.0 784.0 775.0 791.0
SIZE9 866.0 856.0 875.0 823.0 813.0 833.0 882.0 873.0 890.0

SIZE10 962.0 952.0 971.0 915.0 904.0 925.0 980.0 970.0 988.0

Table D.1: Comparison of the size of the stable matching returned by the approximation
algorithm, and the minimum and maximum stable matching sizes, with increasing instance
size.

D.1. Experimental work supplement 214

Approx Minimum Maximum
Case Median 5th 95th Median 5th 95th Median 5th 95th

TIES1 284.0 278.0 290.0 284.0 278.0 290.0 284.0 278.0 290.0
TIES2 285.0 279.0 290.0 282.0 276.0 288.0 286.0 280.0 291.0
TIES3 286.0 280.0 291.0 280.0 274.0 286.0 288.0 282.0 293.0
TIES4 287.0 281.0 292.0 278.0 272.0 283.0 290.0 284.0 295.0
TIES5 288.0 282.0 293.0 275.0 269.0 281.0 292.0 287.0 297.0
TIES6 289.0 284.0 294.0 272.0 266.0 278.0 294.0 289.0 298.0
TIES7 290.0 285.0 295.0 269.0 263.0 275.0 296.0 291.0 299.0
TIES8 292.0 286.0 296.0 266.0 260.0 272.0 298.0 294.0 300.0
TIES9 293.0 288.0 297.0 263.0 257.0 269.0 299.0 296.0 300.0

TIES10 294.0 289.0 298.0 259.0 253.0 265.0 299.0 297.0 300.0
TIES11 295.0 291.0 298.0 255.0 249.0 261.0 300.0 298.0 300.0

Table D.2: Comparison of the size of the stable matching returned by the approximation al-
gorithm, and the minimum and maximum stable matching sizes, with increasing probability
of ties.

Approx Minimum Maximum
Case Median 5th 95th Median 5th 95th Median 5th 95th

PREF1 215.0 205.0 225.0 215.0 205.0 225.0 215.0 205.0 225.0
PREF2 262.0 254.0 270.0 249.0 241.0 257.0 264.0 256.0 272.0
PREF3 281.0 274.0 287.0 267.0 260.0 273.0 285.0 278.0 291.0
PREF4 290.0 285.0 295.0 277.0 271.0 283.0 294.0 289.0 298.0
PREF5 295.0 291.0 298.0 284.0 279.0 289.0 298.0 295.0 300.0
PREF6 298.0 294.0 300.0 289.0 284.0 293.0 299.0 297.0 300.0
PREF7 299.0 296.0 300.0 292.0 288.0 296.0 300.0 299.0 300.0
PREF8 300.0 298.0 300.0 295.0 291.0 297.0 300.0 299.0 300.0
PREF9 300.0 299.0 300.0 296.0 293.0 299.0 300.0 299.0 300.0

PREF10 300.0 299.0 300.0 297.0 295.0 299.0 300.0 300.0 300.0

Table D.3: Comparison of the size of the stable matching returned by the approximation
algorithm, and the minimum and maximum stable matching sizes, with increasing student
preference list length.

D
.1.

E
xperim

entalw
ork

supplem
ent

215
Mean size Mean time (ms)

Case
Minimum

A/Max
% A=Max

% A≥
0.98Max

A Min Max A/Max Min/Max A Min Max

SIZE1 0.9286 17.8 62.7 96.4 92.0 97.8 0.9859 0.9408 43.3 147.6 137.8
SIZE2 0.9585 1.6 62.6 192.6 183.4 195.7 0.9840 0.9373 51.2 230.6 210.6
SIZE3 0.9556 0.1 63.7 288.7 274.9 293.7 0.9831 0.9361 56.6 346.4 313.4
SIZE4 0.9644 0.0 65.6 384.9 366.4 391.7 0.9827 0.9354 59.7 488.7 429.3
SIZE5 0.9654 0.0 66.5 481.0 457.7 489.6 0.9824 0.9349 62.8 660.3 555.6
SIZE6 0.9641 0.0 66.8 577.2 549.3 587.7 0.9821 0.9346 66.4 862.3 713.0
SIZE7 0.9679 0.0 65.4 673.3 640.5 685.7 0.9819 0.9341 69.8 1127.8 900.6
SIZE8 0.9684 0.0 67.4 769.5 732.0 783.8 0.9818 0.9340 73.0 1437.3 1098.2
SIZE9 0.9653 0.0 68.6 865.6 823.4 881.7 0.9817 0.9339 76.5 1784.3 1343.9

SIZE10 0.9701 0.0 68.0 961.7 914.7 979.7 0.9816 0.9337 86.6 2281.2 1651.0

Table D.4: Comparisons of the matching output by the approximation algorithm, and IP model implementation outputs, with increasing instance
size.

Mean size Mean time (ms)

Case
Minimum

A/Max
% A=Max

% A≥
0.98Max

A Min Max A/Max Min/Max A Min Max

TIES1 1.0000 100.0 100.0 284.0 284.0 284.0 1.0000 1.0000 59.2 184.0 186.9
TIES2 0.9792 38.0 100.0 284.9 282.0 285.8 0.9968 0.9866 61.2 192.4 194.7
TIES3 0.9722 12.1 99.3 285.9 279.9 287.9 0.9933 0.9722 61.7 201.0 203.1
TIES4 0.9655 3.4 95.2 287.0 277.6 289.9 0.9900 0.9576 62.3 213.3 214.5
TIES5 0.9626 1.0 82.5 288.0 275.1 291.9 0.9865 0.9423 62.9 234.3 231.0
TIES6 0.9558 0.4 66.7 289.2 272.4 294.0 0.9837 0.9266 64.2 274.2 260.6
TIES7 0.9486 0.2 52.9 290.3 269.4 295.7 0.9816 0.9111 64.3 358.3 311.3
TIES8 0.9527 0.2 46.4 291.4 266.2 297.2 0.9803 0.8957 64.2 577.3 380.7
TIES9 0.9467 0.2 50.4 292.5 262.7 298.3 0.9805 0.8804 65.2 1234.1 427.5

TIES10 0.9529 0.5 61.9 293.7 258.9 299.1 0.9821 0.8656 59.6 2903.4 409.1
TIES11 0.9467 1.0 74.2 294.8 254.8 299.5 0.9842 0.8506 60.4 5756.9 377.4

Table D.5: Comparisons of the matching output by the approximation algorithm, and IP model implementation outputs, with increasing proba-
bility of ties.

D
.1.

E
xperim

entalw
ork

supplem
ent

216
Mean size Mean time (ms)

Case
Minimum

A/Max
% A=Max

% A≥
0.98Max

A Min Max A/Max Min/Max A Min Max

PREF1 1.0000 100.0 100.0 215.0 215.0 215.0 1.0000 1.0000 74.3 107.5 105.1
PREF2 0.9699 12.3 99.0 262.1 249.1 264.1 0.9926 0.9433 67.5 133.8 128.7
PREF3 0.9617 1.2 84.0 280.9 266.4 284.7 0.9867 0.9361 68.1 181.4 174.0
PREF4 0.9623 1.0 82.8 290.0 277.0 293.9 0.9866 0.9426 69.1 249.7 242.6
PREF5 0.9661 4.2 95.1 294.8 283.9 297.7 0.9902 0.9537 68.3 346.7 340.3
PREF6 0.9732 15.7 99.5 297.3 288.7 299.1 0.9940 0.9653 66.1 472.4 440.6
PREF7 0.9767 36.2 100.0 298.7 292.1 299.7 0.9966 0.9746 64.5 638.3 550.9
PREF8 0.9833 58.2 100.0 299.3 294.4 299.9 0.9982 0.9819 64.1 811.9 660.3
PREF9 0.9866 75.5 100.0 299.7 296.1 299.9 0.9991 0.9873 63.4 1032.2 789.1

PREF10 0.9900 87.3 100.0 299.8 297.4 300.0 0.9995 0.9913 104.3 1239.4 931.0

Table D.6: Comparisons of the matching output by the approximation algorithm, and IP model implementation outputs, with increasing student
preference list length.

Instances completed Mean time (ms)
Case A Min Max A Min Max
SCALS1 10 10 10 1393.8 127980.3 227764.3
SCALS2 10 10 9 5356.7 353272.3 1166441.0
SCALS3 10 10 0 13095.3 785421.2 1800000.0
SCALS4 10 7 0 18883.5 1283453.5 1800000.0
SCALS5 10 7 0 20993.0 1455410.1 1800000.0
SCALP1 10 0 9 193.3 1800000.0 264818.6
SCALP2 10 1 10 189.4 1762884.4 631225.2
SCALP3 10 0 3 196.6 1800000.0 1524675.3
SCALP4 10 0 1 248.5 1800000.0 1779420.1
SCALP5 10 0 0 283.7 1800000.0 1800000.0
SCALP6 10 0 0 288.4 1800000.0 1800000.0

Table D.7: Scalability experiment results.

	2020CooperThesis cover sheet (1) (14)
	2020CooperPhD
	1 Introduction
	2 Literature review
	2.1 The House Allocation problem (ha)
	2.2 The Stable Marriage problem (sm)
	2.2.1 Introduction
	2.2.2 The Stable Marriage problem with Incomplete lists (smi)
	2.2.2.1 Formal definitions
	2.2.2.2 Fairness
	2.2.2.3 Structure of stable matchings

	2.2.3 The Stable Marriage problem with Ties and Incomplete lists (smti)

	2.3 The Stable Roommates problem (sr)
	2.4 The Hospitals/Residents problem (hr)
	2.4.1 Introduction
	2.4.2 Variants of hr

	2.5 The Student-Project Allocation problem (spa)
	2.5.1 Introduction
	2.5.2 The Student-Project Allocation problem with lecturer preferences over Students (spa-s)
	2.5.2.1 Formal definitions
	2.5.2.2 The Student-Project Allocation problem with lecturer preferences over Students including Ties (spa-st)
	2.5.2.3 The Student-Project Allocation problem with lecturer preferences over Students including Ties and Lecturer targets (spa-stl)

	2.5.3 The Student-Project Allocation problem with lecturer preferences over Projects (spa-p)

	3 Degree-based stable matchings in smi
	3.1 Introduction
	3.1.1 Background
	3.1.2 Motivation
	3.1.3 Contribution
	3.1.4 Structure of the chapter

	3.2 Preliminary definitions
	3.3 Regret-Equal Degree Iteration Algorithm
	3.3.1 Description of the Algorithm
	3.3.2 Correctness Proof
	3.3.3 Time complexity

	3.4 Regret-Equal Stable Pair Algorithm
	3.4.1 Description of the Algorithm
	3.4.2 Correctness Proof
	3.4.3 Time complexity

	3.5 Regret-equal stable matchings with minimum cost
	3.6 Algorithm to find a min-regret sum stable matching
	3.7 Experiments
	3.7.1 Methodology
	3.7.2 Experimental results summary

	3.8 Conclusions and future work

	4 Profile-based stable matchings in smi
	4.1 Introduction
	4.1.1 Background
	4.1.2 Motivation
	4.1.3 Contribution
	4.1.4 Structure of the chapter

	4.2 Preliminary definitions and results
	4.3 Finding a rank-maximal stable matching using exponential weights
	4.3.1 Exponential weight network
	4.3.2 Maximum weight closed subset of Rp(I)

	4.4 Finding a rank-maximal stable matching using polynomially-bounded weight vectors
	4.4.1 Strategy
	4.4.2 Vb-networks and vb-flows
	4.4.3 Rank-maximal stable matchings

	4.5 Generous stable matchings
	4.6 Complexity of finding profile-based stable matchings in sr
	4.7 Experiments and evaluations
	4.7.1 Methodology
	4.7.2 Experimental results summary

	4.8 Conclusions and future work

	5 Large stable matchings in spa-st
	5.1 Introduction
	5.1.1 Background
	5.1.2 Motivation
	5.1.3 Contribution
	5.1.4 Structure of the chapter

	5.2 Preliminary definitions
	5.3 Cloning from spa-st to smti
	5.4 32-approximation algorithm
	5.4.1 Introduction and preliminary definitions
	5.4.2 Description of the algorithm
	5.4.3 Example execution of the algorithm

	5.5 32-approximation algorithm correctness proofs
	5.5.1 Introduction
	5.5.2 Proofs of preliminary results
	5.5.3 Stability
	5.5.4 Time complexity and termination
	5.5.5 Performance guarantee
	5.5.5.1 Introduction
	5.5.5.2 Preliminary definitions
	5.5.5.3 Example mapped graph
	5.5.5.4 Components in G'
	5.5.5.5 Proof of the 32 performance guarantee

	5.5.6 Lower bound for the algorithm

	5.6 Conclusions and future work

	6 Experiments and IP models for spa-st and lecturer load balancing for spa-stl
	6.1 Introduction
	6.1.1 Background
	6.1.2 Motivation
	6.1.3 Contribution
	6.1.4 Structure of the chapter

	6.2 IP model and experiments for spa-st
	6.2.1 Introduction
	6.2.2 IP model for max-spa-st
	6.2.2.1 Stability definition
	6.2.2.2 Description of variables and constraints
	6.2.2.3 Proof of correctness

	6.2.3 Experimental evaluation
	6.2.3.1 Methodology
	6.2.3.2 Experimental results

	6.3 Load balancing in spa-stl
	6.3.1 Introduction
	6.3.2 Motivation for studying load-balanced matchings
	6.3.3 Load balancing algorithms
	6.3.3.1 Introduction
	6.3.3.2 Load-sum-balanced matchings
	6.3.3.3 Load-balanced matchings
	6.3.3.4 Maximum load-max-balanced matchings

	6.3.4 Stability with load balancing
	6.3.5 IP models
	6.3.5.1 IP model for a load-max-balanced stable matching
	6.3.5.2 IP model for a load-balanced stable matching

	6.4 Conclusions and future work

	7 Conclusions and open problems
	Bibliography
	A Degree-based stable matchings in smi – supplementary material
	A.1 Experimental work supplement

	B Profile-based stable matchings in smi – supplementary material
	B.1 Experimental work supplement

	C Large stable matchings in spa-st – supplementary material
	C.1 Further discussion on Kir12's 32-approximation algorithm for smti

	D Experiments and further results for spa-st – supplementary material
	D.1 Experimental work supplement

